- Home
- Find Gizmos
- Browse by Standard (USA)
- Mississippi Standards
- Mathematics: High School
South Carolina - Mathematics: High School
SC--College- and Career-Ready Standards | Adopted: 2015
A: : Algebra
AAPR: : Arithmetic with Polynomials and Rational Expressions
AAPR.1: : Add, subtract, and multiply polynomials and understand that polynomials are closed under these operations.
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
Addition of Polynomials
Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
AAPR.2: : Know and apply the Division Theorem and the Remainder Theorem for polynomials.
Dividing Polynomials Using Synthetic Division
Divide a polynomial by dragging the correct numbers into the correct positions for synthetic division. Compare the interpreted polynomial division to the synthetic division. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
AAPR.3: : Graph polynomials identifying zeros when suitable factorizations are available and indicating end behavior. Write a polynomial function of least degree corresponding to a given graph.
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
AAPR.4: : Prove polynomial identities and use them to describe numerical relationships.
Factoring Special Products
Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview
AAPR.5: : Apply the Binomial Theorem to expand powers of binomials, including those with one and with two variables. Use the Binomial Theorem to factor squares, cubes, and fourth powers of binomials.
Binomial Probabilities
Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview
ACE: : Creating Equations
ACE.1: : Create and solve equations and inequalities in one variable that model real-world problems involving linear, quadratic, simple rational, and exponential relationships. Interpret the solutions and determine whether they are reasonable.
Absolute Value Equations and Inequalities
Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Compound Inequalities
Explore the graphs of two inequalities and find their union or intersection. Determine the relationship between the endpoints of the inequalities and the endpoints of the compound inequality. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exploring Linear Inequalities in One Variable
Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
Linear Inequalities in Two Variables
Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Quadratic Inequalities
Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Linear Inequalities in One Variable
Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
ACE.2: : Create equations in two or more variables to represent relationships between quantities. Graph the equations on coordinate axes using appropriate labels, units, and scales.
Absolute Value Equations and Inequalities
Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
ACE.3: : Use systems of equations and inequalities to represent constraints arising in real-world situations. Solve such systems using graphical and analytical methods, including linear programing. Interpret the solution within the context of the situation.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Linear Inequalities in Two Variables
Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview
Linear Programming
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
Systems of Linear Inequalities (Slope-intercept form)
Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview
ACE.4: : Solve literal equations and formulas for a specified variable including equations and formulas that arise in a variety of disciplines.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Solving Formulas for any Variable
Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview
AREI: : Reasoning with Equations and Inequalities
AREI.1: : Understand and justify that the steps taken when solving simple equations in one variable create new equations that have the same solution as the original.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Formulas for any Variable
Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
AREI.2: : Solve simple rational and radical equations in one variable and understand how extraneous solutions may arise.
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
AREI.3: : Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Compound Inequalities
Explore the graphs of two inequalities and find their union or intersection. Determine the relationship between the endpoints of the inequalities and the endpoints of the compound inequality. 5 Minute Preview
Exploring Linear Inequalities in One Variable
Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview
Linear Inequalities in Two Variables
Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations I
Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Formulas for any Variable
Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Solving Linear Inequalities in One Variable
Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
AREI.4: : Solve mathematical and real-world problems involving quadratic equations in one variable.
AREI.4.a: : Use the method of completing the square to transform any quadratic equation in 𝑥 into an equation of the form (x − h)² = k that has the same solutions. Derive the quadratic formula from this form.
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
AREI.4.b: : Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a + bi for real numbers a and b.
Factoring Special Products
Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Modeling the Factorization of ax2+bx+c
Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
AREI.5: : Justify that the solution to a system of linear equations is not changed when one of the equations is replaced by a linear combination of the other equation.
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
AREI.6: : Solve systems of linear equations algebraically and graphically focusing on pairs of linear equations in two variables.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
AREI.6.a: : Solve systems of linear equations using the substitution method.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
AREI.6.b: : Solve systems of linear equations using linear combination.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
AREI.7: : Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. Understand that such systems may have zero, one, two, or infinitely many solutions.
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
AREI.8: : Represent a system of linear equations as a single matrix equation in a vector variable.
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
AREI.9: : Using technology for matrices of dimension 3 × 3 or greater, find the inverse of a matrix if it exists and use it to solve systems of linear equations.
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
AREI.10: : Explain that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane.
Absolute Value Equations and Inequalities
Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
AREI.11: : Solve an equation of the form f(x) = g(x) graphically by identifying the x - coordinate(s) of the point(s) of intersection of the graphs of y = f(x) and y =g(x).
Absolute Value Equations and Inequalities
Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
AREI.12: : Graph the solutions to a linear inequality in two variables.
Linear Inequalities in Two Variables
Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview
Linear Programming
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview
Systems of Linear Inequalities (Slope-intercept form)
Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview
ASE: : Structure and Expressions
ASE.1: : Interpret the meanings of coefficients, factors, terms, and expressions based on their real-world contexts. Interpret complicated expressions as being composed of simpler expressions.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Operations with Radical Expressions
Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Using Algebraic Expressions
Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview
ASE.2: : Analyze the structure of binomials, trinomials, and other polynomials in order to rewrite equivalent expressions.
Modeling the Factorization of ax2+bx+c
Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
ASE.3: : Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
ASE.3.a: : Find the zeros of a quadratic function by rewriting it in equivalent factored form and explain the connection between the zeros of the function, its linear factors, the x-intercepts of its graph, and the solutions to the corresponding quadratic equation.
Factoring Special Products
Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Modeling the Factorization of ax2+bx+c
Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Polynomials and Linear Factors
Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
ASE.3.b: : Determine the maximum or minimum value of a quadratic function by completing the square.
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
ASE.3.c: : Use the properties of exponents to transform expressions for exponential functions.
Dividing Exponential Expressions
Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Exponents and Power Rules
Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview
F: : Functions
FBF: : Building Functions
FBF.1: : Write a function that describes a relationship between two quantities.
FBF.1.a: : Write a function that models a relationship between two quantities using both explicit expressions and a recursive process and by combining standard forms using addition, subtraction, multiplication and division to build new functions.
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
FBF.1.b: : Combine functions using the operations addition, subtraction, multiplication, and division to build new functions that describe the relationship between two quantities in mathematical and real-world situations.
Addition and Subtraction of Functions
Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview
FBF.2: : Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
FBF.3: : Describe the effect of the transformations kf (x), f(x) + k, f(x + k), and combinations of such transformations on the graph of y = f(x) for any real number k. Find the value of k given the graphs and write the equation of a transformed parent function given its graph.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
FBF.4: : Understand that an inverse function can be obtained by expressing the dependent variable of one function as the independent variable of another, as f and g are inverse functions if and only if f(x) = y and g(y) = x, for all values of x in the domain of f and all values of y in the domain of g, and find inverse functions for one-to-one function or by restricting the domain.
FBF.4.a: : Use composition to verify one function is an inverse of another.
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
FBF.4.b: : If a function has an inverse, find values of the inverse function from a graph or table.
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
FBF.5: : Understand and verify through function composition that exponential and logarithmic functions are inverses of each other and use this relationship to solve problems involving logarithms and exponents.
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
FIF: : Interpreting Functions
FIF.1: : Extend previous knowledge of a function to apply to general behavior and features of a function.
FIF.1.a: : Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
FIF.1.b: : Represent a function using function notation and explain that f(x) denotes the output of function f that corresponds to the input x.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
FIF.1.c: : Understand that the graph of a function labeled as f is the set of all ordered pairs (x,y) that satisfy the equation y = f(x).
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
FIF.2: : Evaluate functions and interpret the meaning of expressions involving function notation from a mathematical perspective and in terms of the context when the function describes a real-world situation.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
FIF.3: : Define functions recursively and recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
FIF.4: : Interpret key features of a function that models the relationship between two quantities when given in graphical or tabular form. Sketch the graph of a function from a verbal description showing key features. Key features include intercepts; intervals where the function is increasing, decreasing, constant, positive, or negative; relative maximums and minimums; symmetries; end behavior and periodicity.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
FIF.5: : Relate the domain and range of a function to its graph and, where applicable, to the quantitative relationship it describes.
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
FIF.6: : Given a function in graphical, symbolic, or tabular form, determine the average rate of change of the function over a specified interval. Interpret the meaning of the average rate of change in a given context.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Slope
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview
FIF.7: : Graph functions from their symbolic representations. Indicate key features including intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior and periodicity. Graph simple cases by hand and use technology for complicated cases.
FIF.7.a: : Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
FIF.7.b: : Graph radical functions over their domain show end behavior.
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
FIF.7.c: : Graph exponential and logarithmic functions, showing intercepts and end behavior.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
FIF.7.d: : Graph trigonometric functions, showing period, midline, and amplitude.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Logarithmic Functions: Translating and Scaling
Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
FIF.8: : Translate between different but equivalent forms of a function equation to reveal and explain different properties of the function.
FIF.8.a: : Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Factoring Special Products
Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Modeling the Factorization of ax2+bx+c
Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Modeling the Factorization of x2+bx+c
Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
FIF.8.b: : Interpret expressions for exponential functions by using the properties of exponents.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
FIF.9: : Compare properties of two functions given in different representations such as algebraic, graphical, tabular, or verbal.
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
FLQE: : Linear, Quadratic, and Exponential
FLQE.1: : Distinguish between situations that can be modeled with linear functions or exponential functions by recognizing situations in which one quantity changes at a constant rate per unit interval as opposed to those in which a quantity changes by a constant percent rate per unit interval.
FLQE.1.a: : Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Direct and Inverse Variation
Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
FLQE.1.b: : Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
FLQE.2: : Create symbolic representations of linear and exponential functions, including arithmetic and geometric sequences, given graphs, verbal descriptions, and tables.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
FLQE.3: : Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or more generally as a polynomial function.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
FLQE.4: : Express a logarithm as the solution to the exponential equation, ab to the ct power = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
FLQE.5: : Interpret the parameters in a linear or exponential function in terms of the context.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Growth and Decay
Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
FT: : Trigonometry
FT.1: : Understand that the radian measure of an angle is the length of the arc on the unit circle subtended by the angle.
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
FT.2: : Define sine and cosine as functions of the radian measure of an angle in terms of the x - and y - coordinates of the point on the unit circle corresponding to that angle and explain how these definitions are extensions of the right triangle definitions.
FT.2.a: : Define the tangent, cotangent, secant, and cosecant functions as ratios involving sine and cosine.
Simplifying Trigonometric Expressions
Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
FT.2.b: : Write cotangent, secant, and cosecant functions as the reciprocals of tangent, cosine, and sine, respectively.
Simplifying Trigonometric Expressions
Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
FT.3: : Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4, and π/6, and use the unit circle to express the values of sine, cosine, and tangent for π − x, π + x, and 2π − x in terms of their values for x, where x is any real number.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sum and Difference Identities for Sine and Cosine
Choose the correct steps to evaluate a trigonometric expression using sum and difference identities. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
FT.4: : Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
FT.5: : Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
FT.8: : Justify the Pythagorean, even/odd, and cofunction identities for sine and cosine using their unit circle definitions and symmetries of the unit circle and use the Pythagorean identity to find sinA, cosA, or tanA, given sinA, cosA, or tanA, and the quadrant of the angle.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Simplifying Trigonometric Expressions
Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
FT.9: : Justify the sum and difference formulas for sine, cosine, and tangent and use them to solve problems.
Simplifying Trigonometric Expressions
Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Sum and Difference Identities for Sine and Cosine
Choose the correct steps to evaluate a trigonometric expression using sum and difference identities. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
G: : Geometry
GCI: : Circles
GCI.2: : Identify and describe relationships among inscribed angles, radii, and chords; among inscribed angles, central angles, and circumscribed angles; and between radii and tangents to circles. Use those relationships to solve mathematical and real-world problems.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
GCI.3: : Construct the inscribed and circumscribed circles of a triangle using a variety of tools, including a compass, a straightedge, and dynamic geometry software, and prove properties of angles for a quadrilateral inscribed in a circle.
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
GCI.5: : Derive the formulas for the length of an arc and the area of a sector in a circle and apply these formulas to solve mathematical and real-world problems.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
GCO: : Congruence
GCO.1: : Define angle, perpendicular line, parallel line, line segment, ray, circle, and skew in terms of the undefined notions of point, line, and plane. Use geometric figures to represent and describe real-world objects.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
Parallel, Intersecting, and Skew Lines
Explore the properties of intersecting, parallel, and skew lines as well as lines in the plane. Rotate the plane and lines in three-dimensional space to ensure a full understanding of these objects. 5 Minute Preview
GCO.2: : Represent translations, reflections, rotations, and dilations of objects in the plane by using paper folding, sketches, coordinates, function notation, and dynamic geometry software, and use various representations to help understand the effects of simple transformations and their compositions.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Holiday Snowflake Designer
Fold paper and cut in a certain way to make symmetrical snowflakes with six sides (similar to what can be found in nature) or with eight sides (an easier folding method). This simulation allows you to cut virtual paper on the computer screen with round dot or square dot "scissors" of various sizes before using physical paper. 5 Minute Preview
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GCO.3: : Describe rotations and reflections that carry a regular polygon onto itself and identify types of symmetry of polygons, including line, point, rotational, and self-congruence, and use symmetry to analyze mathematical situations.
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GCO.4: : Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GCO.5: : Predict and describe the results of transformations on a given figure using geometric terminology from the definitions of the transformations, and describe a sequence of transformations that maps a figure onto its image.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Holiday Snowflake Designer
Fold paper and cut in a certain way to make symmetrical snowflakes with six sides (similar to what can be found in nature) or with eight sides (an easier folding method). This simulation allows you to cut virtual paper on the computer screen with round dot or square dot "scissors" of various sizes before using physical paper. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GCO.6: : Demonstrate that triangles and quadrilaterals are congruent by identifying a combination of translations, rotations, and reflections in various representations that move one figure onto the other.
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GCO.7: : Prove two triangles are congruent by applying the Side-Angle-Side, Angle-Side-Angle, Angle- Angle-Side, and Hypotenuse-Leg congruence conditions.
Congruence in Right Triangles
Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
GCO.8: : Prove, and apply in mathematical and real-world contexts, theorems about lines and angles, including the following:
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
GCO.8.a: : vertical angles are congruent;
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
GCO.8.b: : when a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and consecutive interior angles are supplementary;
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
GCO.8.c: : any point on a perpendicular bisector of a line segment is equidistant from the endpoints of the segment;
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
GCO.8.d: : perpendicular lines form four right angles.
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
GCO.9: : Prove, and apply in mathematical and real-world contexts, theorems about the relationships within and among triangles, including the following:
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
GCO.9.a: : measures of interior angles of a triangle sum to 180°;
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Polygon Angle Sum
Derive the sum of the angles of a polygon by dividing the polygon into triangles and summing their angles. Vary the number of sides and determine how the sum of the angles changes. Dilate the polygon to see that the sum is unchanged. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
GCO.9.b: : base angles of isosceles triangles are congruent;
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
GCO.9.c: : the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length;
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
GCO.9.d: : the medians of a triangle meet at a point.
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
GCO.10: : Prove, and apply in mathematical and real-world contexts, theorems about parallelograms, including the following:
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
GCO.10.a: : opposite sides of a parallelogram are congruent;
Classifying Quadrilaterals
Apply constraints to a quadrilateral, and then reshape and resize it. Classify the figure by its constraints. Explore the differences between the different kinds of quadrilaterals. 5 Minute Preview
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
GCO.10.b: : opposite angles of a parallelogram are congruent;
Classifying Quadrilaterals
Apply constraints to a quadrilateral, and then reshape and resize it. Classify the figure by its constraints. Explore the differences between the different kinds of quadrilaterals. 5 Minute Preview
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
GCO.10.c: : diagonals of a parallelogram bisect each other;
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
GCO.10.d: : rectangles are parallelograms with congruent diagonals;
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
GCO.10.e: : a parallelogram is a rhombus if and only if the diagonals are perpendicular.
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
GCO.11: : Construct geometric figures using a variety of tools, including a compass, a straightedge, dynamic geometry software, and paper folding, and use these constructions to make conjectures about geometric relationships.
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
GGMD: : Geometric Measurement and Dimension
GGMD.1: : Explain the derivations of the formulas for the circumference of a circle, area of a circle, and volume of a cylinder, pyramid, and cone. Apply these formulas to solve mathematical and real-world problems.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
GGMD.2: : Explain the derivation of the formulas for the volume of a sphere and other solid figures using Cavalieri’s principle.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
GGMD.3: : Apply surface area and volume formulas for prisms, cylinders, pyramids, cones, and spheres to solve problems and justify results. Include problems that involve algebraic expressions, composite figures, geometric probability, and real-world applications.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
Surface and Lateral Areas of Pyramids and Cones
Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
GGPE: : Expressing Geometric Properties with Equations
GGPE.1: : Understand that the standard equation of a circle is derived from the definition of a circle and the distance formula.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
GGPE.2: : Use the geometric definition of a parabola to derive its equation given the focus and directrix.
Parabolas
Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview
GGPE.3: : Use the geometric definition of an ellipse and of a hyperbola to derive the equation of each given the foci and points whose sum or difference of distance from the foci are constant.
Ellipses
Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview
Hyperbolas
Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview
GGPE.5: : Analyze slopes of lines to determine whether lines are parallel, perpendicular, or neither. Write the equation of a line passing through a given point that is parallel or perpendicular to a given line. Solve geometric and real-world problems involving lines and slope.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Slope
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
GGPE.7: : Use the distance and midpoint formulas to determine distance and midpoint in a coordinate plane, as well as areas of triangles and rectangles, when given coordinates.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
GSRT: : Similarity, Right Triangles, and Trigonometry
GSRT.1: : Understand a dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. Verify experimentally the properties of dilations given by a center and a scale factor. Understand the dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GSRT.2: : Use the definition of similarity to decide if figures are similar and justify decision. Demonstrate that two figures are similar by identifying a combination of translations, rotations, reflections, and dilations in various representations that move one figure onto the other.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Perimeters and Areas of Similar Figures
Manipulate two similar figures and vary the scale factor to see what changes are possible under similarity. Explore how the perimeters and areas of two similar figures compare. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
GSRT.3: : Prove that two triangles are similar using the Angle-Angle criterion and apply the proportionality of corresponding sides to solve problems and justify results.
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GSRT.4: : Prove, and apply in mathematical and real-world contexts, theorems involving similarity about triangles, including the following:
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GSRT.4.a: : A line drawn parallel to one side of a triangle divides the other two sides into parts of equal proportion.
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GSRT.4.b: : If a line divides two sides of a triangle proportionally, then it is parallel to the third side.
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GSRT.4.c: : The square of the hypotenuse of a right triangle is equal to the sum of squares of the other two sides.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Surface and Lateral Areas of Pyramids and Cones
Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
GSRT.5: : Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Congruence in Right Triangles
Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Perimeters and Areas of Similar Figures
Manipulate two similar figures and vary the scale factor to see what changes are possible under similarity. Explore how the perimeters and areas of two similar figures compare. 5 Minute Preview
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
GSRT.6: : Understand how the properties of similar right triangles allow the trigonometric ratios to be defined and determine the sine, cosine, and tangent of an acute angle in a right triangle.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
GSRT.8: : Solve right triangles in applied problems using trigonometric ratios and the Pythagorean Theorem.
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
N: : Number and Quantity
NRNS: : Real Number System
NRNS.2: : Use the definition of the meaning of rational exponents to translate between rational exponent and radical forms.
Exponents and Power Rules
Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview
NCNS: : Complex Number System
NCNS.1: : Know there is a complex number i such that i² = −1, and every complex number has the form a + bi with a and b real.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
NCNS.2: : Use the relation i²= −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
NCNS.3: : Find the conjugate of a complex number in rectangular and polar forms and use conjugates to find moduli and quotients of complex numbers.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
NCNS.4: : Graph complex numbers on the complex plane in rectangular and polar form and explain why the rectangular and polar forms of a given complex number represent the same number.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
NCNS.5: : Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
NCNS.6: : Determine the modulus of a complex number by multiplying by its conjugate and determine the distance between two complex numbers by calculating the modulus of their difference.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
NCNS.7: : Solve quadratic equations in one variable that have complex solutions.
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
NVMQ: : Vector and Matrix Quantities
NVMQ.1: : Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
NVMQ.2: : Represent and model with vector quantities. Use the coordinates of an initial point and of a terminal point to find the components of a vector.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
NVMQ.3: : Represent and model with vector quantities. Solve problems involving velocity and other quantities that can be represented by vectors.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
NVMQ.4: : Perform operations on vectors.
NVMQ.4.a: : Add and subtract vectors using components of the vectors and graphically.
Adding Vectors
Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
NVMQ.4.b: : Given the magnitude and direction of two vectors, determine the magnitude of their sum and of their difference.
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
NVMQ.5: : Multiply a vector by a scalar, representing the multiplication graphically and computing the magnitude of the scalar multiple.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Vectors
Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview
NVMQ.7: : Perform operations with matrices of appropriate dimensions including addition, subtraction, and scalar multiplication.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
NVMQ.11: : Apply 2 × 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
SP: : Statistics and Probability
SPCR: : Conditional Probability and Rules of Probability
SPCR.1: : Describe events as subsets of a sample space and
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SPCR.1.a: : Use Venn diagrams to represent intersections, unions, and complements.
Compound Inequalities
Explore the graphs of two inequalities and find their union or intersection. Determine the relationship between the endpoints of the inequalities and the endpoints of the compound inequality. 5 Minute Preview
SPCR.1.b: : Relate intersections, unions, and complements to the words and, or, and not.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SPCR.1.c: : Represent sample spaces for compound events using Venn diagrams.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Permutations and Combinations
Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview
SPCR.2: : Use the multiplication rule to calculate probabilities for independent and dependent events. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
SPCR.3: : Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
SPCR.4: : Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.
Histograms
Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview
SPCR.5: : Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
SPCR.6: : Calculate the conditional probability of an event A given event B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
SPCR.7: : Apply the Addition Rule and the Multiplication Rule to determine probabilities, including conditional probabilities, and interpret the results in terms of the probability model.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
SPCR.8: : Use permutations and combinations to solve mathematical and real-world problems, including determining probabilities of compound events. Justify the results.
Binomial Probabilities
Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview
Permutations and Combinations
Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview
SPMJ: : Making Inferences and Justifying Conclusions
SPMJ.1: : Understand statistics and sampling distributions as a process for making inferences about population parameters based on a random sample from that population.
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
SPMJ.2: : Distinguish between experimental and theoretical probabilities. Collect data on a chance event and use the relative frequency to estimate the theoretical probability of that event. Determine whether a given probability model is consistent with experimental results.
Binomial Probabilities
Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SPMJ.3: : Plan and conduct a survey to answer a statistical question. Recognize how the plan addresses sampling technique, randomization, measurement of experimental error and methods to reduce bias.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
SPMJ.4: : Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
SPMJ.6: : Evaluate claims and conclusions in published reports or articles based on data by analyzing study design and the collection, analysis, and display of the data.
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
SPID: : Interpreting Data
SPID.1: : Select and create an appropriate display, including dot plots, histograms, and box plots, for data that includes only real numbers.
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Histograms
Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
SPID.2: : Use statistics appropriate to the shape of the data distribution to compare center and spread of two or more different data sets that include all real numbers.
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
SPID.3: : Summarize and represent data from a single data set. Interpret differences in shape, center, and spread in the context of the data set, accounting for possible effects of extreme data points (outliers).
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
SPID.4: : Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
SPID.5: : Analyze bivariate categorical data using two-way tables and identify possible associations between the two categories using marginal, joint, and conditional frequencies.
Histograms
Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview
SPID.6: : Using technology, create scatterplots and analyze those plots to compare the fit of linear, quadratic, or exponential models to a given data set. Select the appropriate model, fit a function to the data set, and use the function to solve problems in the context of the data.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
SPID.7: : Create a linear function to graphically model data from a real-world problem and interpret the meaning of the slope and intercept(s) in the context of the given problem.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
SPID.8: : Using technology, compute and interpret the correlation coefficient of a linear fit.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
SPID.9: : Differentiate between correlation and causation when describing the relationship between two variables. Identify potential lurking variables which may explain an association between two variables.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
SPID.10: : Create residual plots and analyze those plots to compare the fit of linear, quadratic, and exponential models to a given data set. Select the appropriate model and use it for interpolation.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
SPMD: : Using Probability to Make Decisions
SPMD.1: : Develop the probability distribution for a random variable defined for a sample space in which a theoretical probability can be calculated and graph the distribution.
Binomial Probabilities
Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SPMD.2: : Calculate the expected value of a random variable as the mean of its probability distribution. Find expected values by assigning probabilities to payoff values. Use expected values to evaluate and compare strategies in real-world scenarios.
Binomial Probabilities
Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
SPMD.3: : Construct and compare theoretical and experimental probability distributions and use those distributions to find expected values.
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SPMD.4: : Use probability to evaluate outcomes of decisions by finding expected values and determine if decisions are fair.
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SPMD.5: : Use probability to evaluate outcomes of decisions. Use probabilities to make fair decisions.
Lucky Duck (Expected Value)
Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SPMD.6: : Analyze decisions and strategies using probability concepts.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
LC: : Calculus
LC: : Limits and Continuity
LC.2: : Understand the definition and graphical interpretation of continuity of a function.
LC.2.b: : Classify discontinuities as removable, jump, or infinite. Justify that classification using the definition of continuity.
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
D: : Derivatives
D.1: : Understand the concept of the derivative of a function geometrically, numerically, analytically, and verbally.
D.1.a: : Interpret the value of the derivative of a function as the slope of the corresponding tangent line.
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
D.1.c: : Approximate the derivative graphically by finding the slope of the tangent line drawn to a curve at a given point and numerically by using the difference quotient.
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
D.1.f: : Understand the definition of the derivative and use this definition to determine the derivatives of various functions.
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
D.2: : Apply the rules of differentiation to functions.
D.2.a: : Know and apply the derivatives of constant, power, trigonometric, inverse trigonometric, exponential, and logarithmic functions.
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
D.3: : Apply theorems and rules of differentiation to solve mathematical and real-world problems.
D.3.c: : Explain the relationship between the increasing/decreasing behavior of f and the signs of f′. Use the relationship to generate a graph of f given the graph of f′, and vice versa, and to identify relative and absolute extrema of f.
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
D.3.d: : Explain the relationships among the concavity of the graph of f, the increasing/decreasing behavior of f′ and the signs of f′′. Use those relationships to generate graphs of f, f′, and f′′ given any one of them and identify the points of inflection of f.
Graphs of Derivative Functions
What does the graph of a derivative function look like? What can a derivative function tell you about the original function? What can't it tell you? Explore these questions for five different types of functions: linear, quadratic, cubic, absolute value, and sine. 5 Minute Preview
C.I: : Integrals
C.I.1: : Understand the concept of the integral of a function geometrically, numerically, analytically, and contextually.
C.I.1.b: : Approximate definite integrals by calculating Riemann sums using left, right, and mid-point evaluations, and using trapezoidal sums.
Riemann Sum
Approximate the area under a curve in an interval using rectangles. Compare the results of left-hand summation to the results of right-hand summation. Vary the interval and the number of rectangles and explore how the graph of the rectangles and curve change in response. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote