Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Core Curriculum
  • McGraw Hill Textbooks
  • McGraw Hill Inspire Earth Science (2020)

McGraw Hill Inspire Earth Science (2020)

1: Unit 1 Composition of Earth

1.1: Module 1: Introduction to Earth Science

1.1.2: Understanding Maps

Screenshot of Building Topographic Maps

Building Topographic Maps

Build a topographic map by flooding a three dimensional landscape with water and drawing contour lines. Draw a profile of a landscape based on the topographic map. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ocean Mapping

Ocean Mapping

Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Reading Topographic Maps

Reading Topographic Maps

Understand how topographic maps work by creating a three-dimensional landscape and observing the corresponding contour lines. See how mountains, depressions, valleys and cliffs are represented on topographic maps. Fill in the landscape with water to demonstrate that contours are lines of constant elevation. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2: Module 2: Matter and Change

1.2.1: Matter

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.2: Combining Matter

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Polarity and Intermolecular Forces

Polarity and Intermolecular Forces

Combine various metal and nonmetal atoms to observe how the electronegativity difference determines the polarity of chemical bonds. Place molecules into an electric field to experimentally determine if they are polar or nonpolar. Create different mixtures of polar and nonpolar molecules to explore the intermolecular forces that arise between them. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.3: States if Matter

Screenshot of Phase Changes

Phase Changes

Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

1.3: Module 3: Minerals

1.3.1: What is a Mineral

Screenshot of Mineral Identification

Mineral Identification

Observe and measure the properties of a mineral sample, and then use a key to identify the mineral. Students can observe the color, luster, shape, density, hardness, streak, and reaction to acid for each mineral. There are 26 mineral samples to identify. 5 Minute Preview


Lesson Info
Launch Gizmo

1.4: Module 4: Rocks

1.4.1: Igneous Rocks

Screenshot of Rock Classification

Rock Classification

Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview


Lesson Info
Launch Gizmo

1.4.2: Sedimentary Rocks

Screenshot of Rock Classification

Rock Classification

Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview


Lesson Info
Launch Gizmo

1.4.3: Metamorphic Rocks

Screenshot of Rock Classification

Rock Classification

Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo

2: Surface Processes on Earth

2.1: Module 5: Weathering, Erosion, and Soil

2.1.1: Weathering

Screenshot of Weathering

Weathering

Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview


Lesson Info
Launch Gizmo

2.1.2: Erosion and Deposition

Screenshot of Erosion Rates

Erosion Rates

Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of River Erosion

River Erosion

Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview


Lesson Info
Launch Gizmo

2.3: Module 7: Water

2.3.1: Surface Water Movement

Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo

2.3.2: Streams, Lakes, and Wetlands

Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of River Erosion

River Erosion

Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview


Lesson Info
Launch Gizmo

3: The Atmosphere and The Oceans

3.1: Module 8: Atmosphere

3.1.1: Atmospheric Basics

Screenshot of Greenhouse Effect - Metric

Greenhouse Effect - Metric

Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The amount of greenhouse gases present in the atmosphere can be adjusted through time, and the long-term effects can be investigated. 5 Minute Preview


Lesson Info
Launch Gizmo

3.1.2: Properties of the Atmosphere

Screenshot of Relative Humidity

Relative Humidity

Measure the temperature on wet and dry bulb thermometers to determine relative humidity. Measure the dew point by cooling a bucket of water until condensation forms on the surface. See how the relative humidity and dew point change over the course of a day. 5 Minute Preview


Lesson Info
Launch Gizmo

3.1.3: Clouds and Precipitation

Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo

3.2: Module 9: Meteorology

3.2.2 : Weather Systems

Screenshot of Weather Maps - Metric

Weather Maps - Metric

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo

3.3: Module 10: The Nature of Storms

3.3.3: Tropical Storms

Screenshot of Hurricane Motion - Metric

Hurricane Motion - Metric

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo

3.4: Module 11: Climate

3.4.3: Climatic Changes and Patterns

Screenshot of Seasons Around the World

Seasons Around the World

Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons in 3D

Seasons in 3D

Gain an understanding of the causes of seasons by observing Earth as it orbits the Sun in three dimensions. Observe the path of the Sun across the sky on any date and from any location. Create graphs of solar intensity and day length, and use collected data to describe and explain seasonal changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons: Earth, Moon, and Sun

Seasons: Earth, Moon, and Sun

Observe the motions of the Earth, Moon and Sun in three dimensions to explain Sunrise and Sunset, and to see how we define a day, a month, and a year. Compare times of Sunrise and Sunset for different dates and locations. Relate shadows to the position of the Sun in the sky, and relate shadows to compass directions. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons: Why do we have them?

Seasons: Why do we have them?

Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview


Lesson Info
Launch Gizmo

3.4.4: Impact of Human Activities

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Greenhouse Effect - Metric

Greenhouse Effect - Metric

Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The amount of greenhouse gases present in the atmosphere can be adjusted through time, and the long-term effects can be investigated. 5 Minute Preview


Lesson Info
Launch Gizmo

3.5: Module 12: Earth's Oceans

3.5.2: Ocean Movements

Screenshot of Convection Cells

Convection Cells

Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Tides - Metric

Tides - Metric

Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview


Lesson Info
Launch Gizmo

4: Unit 4 The Dynamic Earth

4.1: Module 13: Plate Tectonics

4.1.1: Drifting Continents

Screenshot of Building Pangaea

Building Pangaea

In 1915, Alfred Wegener proposed that all of Earth's continents were once joined in an ancient supercontinent he called Pangaea. Wegener's idea of moving continents led to the modern theory of plate tectonics. Create your own version of Pangaea by fitting Earth's landmasses together like puzzle pieces. Use evidence from fossils, rocks, and glaciers to refine your map. 5 Minute Preview


Lesson Info
Launch Gizmo

4.1.3: Plate Boundaries

Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

4.1.4: Causes of Plate Motions

Screenshot of Convection Cells

Convection Cells

Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview


Lesson Info
Launch Gizmo

4.3: Module 15: Earthquakes

4.3.2: Seismic Waves and Earth's Interior

Screenshot of Earthquakes 1 - Recording Station

Earthquakes 1 - Recording Station

Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo

4.3.3: Measuring and Locating Earthquakes

Screenshot of Earthquakes 1 - Recording Station

Earthquakes 1 - Recording Station

Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Earthquakes 2 - Determination of Epicenter

Earthquakes 2 - Determination of Epicenter

Locate the epicenter of an earthquake by analyzing seismic data from three recording stations. Measure difference in P- and S-wave arrival times, then use data from the Earthquakes 1 - Recording Station Gizmo to find the distance of the epicenter from each station. 5 Minute Preview


Lesson Info
Launch Gizmo

4.4: Module 16: Mountain Building

4.4.2: Orogeny

Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

6: Unit 6 Resources and the Environment

6.1: Module 19: Earth's Resources

6.1.3: Air Resources

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

6.1.5: Energy Resources

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo

6.2: Module 20: Human Impact on Resources

6.2.1: Populations and the Use of Natural Resources

Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo

6.2.3: Human Impacts on Air Resources

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo

6.2.4: Human Impact on Water Resources

Screenshot of Water Pollution

Water Pollution

Get to know the four main types of pollution present in the environment, and then look at a variety of real-world examples as you try to guess what type of pollution is represented by each situation. All of the real-world situations can be viewed every day in different parts of the world. 5 Minute Preview


Lesson Info
Launch Gizmo

7: Unit 7 Beyond Earth

7.1: Module 21: The Sun-Earth-Moon System

7.1.3: The Sun-Earth-Moon System

Screenshot of 2D Eclipse

2D Eclipse

Manipulate the position of the Moon to model solar and lunar eclipses. View Earth's shadow, the Moon's shadow, or both. Observe the Moon and Sun from Earth during a partial and total eclipse. The sizes of the three bodies and the Earth-Moon distance can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of 3D Eclipse

3D Eclipse

Observe the motions of the Earth, Moon and Sun in three dimensions to investigate the causes and frequency of eclipses. Observe Earth's shadow crossing the Moon during a lunar eclipse, and the path of the Moon's shadow across Earth's surface during a solar eclipse. The angle of the Moon's orbit can be adjusted, as well as the distance of the Moon from the Earth. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Moonrise, Moonset, and Phases

Moonrise, Moonset, and Phases

Gain an understanding of moonrise and moonset times by observing the relative positions of Earth and the Moon along with a view of the Moon from Earth. A line shows the horizon for a person standing on Earth so that moonrise and moonset times can be determined. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phases of the Moon

Phases of the Moon

Understand the phases of the Moon by observing the positions of the Moon, Earth and Sun. A view of the Moon from Earth is shown on the right as the Moon orbits Earth. Learn the names of Moon phases and in what order they occur. Click Play to watch the Moon go around, or click Pause and drag the Moon yourself. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons Around the World

Seasons Around the World

Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons in 3D

Seasons in 3D

Gain an understanding of the causes of seasons by observing Earth as it orbits the Sun in three dimensions. Observe the path of the Sun across the sky on any date and from any location. Create graphs of solar intensity and day length, and use collected data to describe and explain seasonal changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons: Earth, Moon, and Sun

Seasons: Earth, Moon, and Sun

Observe the motions of the Earth, Moon and Sun in three dimensions to explain Sunrise and Sunset, and to see how we define a day, a month, and a year. Compare times of Sunrise and Sunset for different dates and locations. Relate shadows to the position of the Sun in the sky, and relate shadows to compass directions. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons: Why do we have them?

Seasons: Why do we have them?

Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Tides - Metric

Tides - Metric

Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview


Lesson Info
Launch Gizmo

7.2: Module 22: Our Solar System

7.2.1: Formation of the Solar System

Screenshot of Gravitational Force

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Orbital Motion - Kepler's Laws

Orbital Motion - Kepler's Laws

Learn Kepler's three laws of planetary motion by examining the orbit of a planet around a star. The initial position, velocity, and mass of the planet can be varied as well as the mass of the star. The foci and centers of orbits can be displayed and compared to the location of the star. The area swept out by the planet in a given time period can be measured, and data on orbital radii and periods can be plotted in several ways. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solar System Explorer

Solar System Explorer

Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified. 5 Minute Preview


Lesson Info
Launch Gizmo

7.2.3: The Inner Planets

Screenshot of Comparing Earth and Venus

Comparing Earth and Venus

Observe the motions of Venus and Earth as the planets move around the Sun. Measure the length of a day and a year on Earth and Venus, and compare the length of a solar day to the length of a sidereal day. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solar System Explorer

Solar System Explorer

Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified. 5 Minute Preview


Lesson Info
Launch Gizmo

7.2.4: The Outer Planets

Screenshot of Solar System Explorer

Solar System Explorer

Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified. 5 Minute Preview


Lesson Info
Launch Gizmo

7.3: Module 23: Stars

7.3.1: The Sun

Screenshot of Nuclear Reactions

Nuclear Reactions

Explore examples of nuclear fusion and fission reactions. Follow the steps of the proton-proton chain, CNO cycle, and fission of uranium-235. Write balanced nuclear equations for each step, and compare the energy produced in each process. 5 Minute Preview


Lesson Info
Launch Gizmo

7.3.2: Measuring the Stars

Screenshot of Big Bang Theory - Hubble's Law

Big Bang Theory - Hubble's Law

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of H-R Diagram

H-R Diagram

A collection of stars visible from Earth can be arranged and classified based on their color, temperature, luminosity, radius, and mass. This can be done using one or two-dimensional plots, including a Hertzsprung-Russell diagram of luminosity vs. temperature. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Star Spectra

Star Spectra

Analyze the spectra of a variety of stars. Determine the elements that are represented in each spectrum, and use this information to infer the temperature and classification of the star. Look for unusual features such as redshifted stars, nebulae, and stars with large planets. 5 Minute Preview


Lesson Info
Launch Gizmo

7.4: Module 24: Galaxies and the Universe

7.4.1: The Milky Way Galaxy

Screenshot of Big Bang Theory - Hubble's Law

Big Bang Theory - Hubble's Law

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe. 5 Minute Preview


Lesson Info
Launch Gizmo

7.4.2: Other Galaxies in the Universe

Screenshot of Big Bang Theory - Hubble's Law

Big Bang Theory - Hubble's Law

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe. 5 Minute Preview


Lesson Info
Launch Gizmo

7.4.3: Cosmology

Screenshot of Big Bang Theory - Hubble's Law

Big Bang Theory - Hubble's Law

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe. 5 Minute Preview


Lesson Info
Launch Gizmo

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap