- Home
- Find Gizmos
- Browse by Standard (USA)
- Indiana Standards
- Mathematics: Geometry with Data Analysis
Alabama - Mathematics: Geometry with Data Analysis
Course of Study | Adopted: 2019
GDA.NQ: : Number and Quantity
1.1: : Together, irrational numbers and rational numbers complete the real number system, representing all points on the number line, while there exist numbers beyond the real numbers called complex numbers.
GDA.NQ.1: : Students will… Extend understanding of irrational and rational numbers by rewriting expressions involving radicals, including addition, subtraction, multiplication, and division, in order to recognize geometric patterns.
Simplifying Radical Expressions
Simplify a radical expression. Use step-by-step feedback to diagnose any incorrect steps. 5 Minute Preview
1.2: : Quantitative reasoning includes and mathematical modeling requires attention to units of measurement.
GDA.NQ.2: : Students will… Use units as a way to understand problems and to guide the solution of multi-step problems.
GDA.NQ.2.a: : Choose and interpret units consistently in formulas.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
Surface and Lateral Areas of Pyramids and Cones
Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
GDA.NQ.2.b: : Choose and interpret the scale and the origin in graphs and data displays.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Distance-Time Graphs
Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Distance-Time and Velocity-Time Graphs
Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
Histograms
Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
GDA.NQ.2.c: : Define appropriate quantities for the purpose of descriptive modeling.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
GDA.NQ.2.d: : Choose a level of accuracy appropriate to limitations of measurements when reporting quantities.
Unit Conversions 2 - Scientific Notation and Significant Digits
Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview
GDA.AF: : Algebra and Functions
GDA.AF.1: : Algebra
2.1.2: : Expressions, equations, and inequalities can be used to analyze and make predictions, both within mathematics and as mathematics is applied in different contexts – in particular, contexts that arise in relation to linear, quadratic, and exponential situations.
GDA.AF.1.4: : Students will… Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Solving Formulas for any Variable
Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview
GDA.AF.2: : Connecting Algebra to Functions
2.2.1: : Graphs can be used to obtain exact or approximate solutions of equations, inequalities, and systems of equations and inequalities—including systems of linear equations in two variables and systems of linear and quadratic equations (given or obtained by using technology).
GDA.AF.2.5: : Students will… Verify that the graph of a linear equation in two variables is the set of all its solutions plotted in the coordinate plane, which forms a line.
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
GDA.AF.2.6: : Students will… Derive the equation of a circle of given center and radius using the Pythagorean Theorem.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
GDA.AF.2.6.a: : Given the endpoints of the diameter of a circle, use the midpoint formula to find its center and then use the Pythagorean Theorem to find its equation.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
GDA.AF.2.6.b: : Derive the distance formula from the Pythagorean Theorem.
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
GDA.DSP: : Data Analysis, Statistics, and Probability
GDA.DSP.1: : Quantitative Literacy
3.1.1: : Mathematical and statistical reasoning about data can be used to evaluate conclusions and assess risks.
GDA.DSP.1.7: : Students will… Use mathematical and statistical reasoning with quantitative data, both univariate data (set of values) and bivariate data (set of pairs of values) that suggest a linear association, in order to draw conclusions and assess risk.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
GDA.DSP.2: : Visualizing and Summarizing Data
3.2.1: : Data arise from a context and come in two types: quantitative (continuous or discrete) and categorical. Technology can be used to “clean” and organize data, including very large data sets, into a useful and manageable structure – a first step in any analysis of data.
GDA.DSP.2.8: : Students will… Use technology to organize data, including very large data sets, into a useful and manageable structure.
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
3.2.2: : Distributions of quantitative data (continuous or discrete) in one variable should be described in the context of the data with respect to what is typical (the shape, with appropriate measures of center and variability, including standard deviation) and what is not (outliers), and these characteristics can be used to compare two or more subgroups with respect to a variable.
GDA.DSP.2.9: : Students will… Represent the distribution of univariate quantitative data with plots on the real number line, choosing a format (dot plot, histogram, or box plot) most appropriate to the data set, and represent the distribution of bivariate quantitative data with a scatter plot.
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Histograms
Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
GDA.DSP.2.10: : Students will… Use statistics appropriate to the shape of the data distribution to compare and contrast two or more data sets, utilizing the mean and median for center and the interquartile range and standard deviation for variability.
GDA.DSP.2.10.b: : Calculate the standard deviation for a data set, using technology where appropriate.
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
GDA.DSP.2.11: : Students will… Interpret differences in shape, center, and spread in the context of data sets, accounting for possible effects of extreme data points (outliers) on mean and standard deviation.
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
3.2.3: : Scatter plots, including plots over time, can reveal patterns, trends, clusters, and gaps that are useful in analyzing the association between two contextual variables.
GDA.DSP.2.12: : Students will… Represent data of two quantitative variables on a scatter plot, and describe how the variables are related.
GDA.DSP.2.12.a: : Find a linear function for a scatter plot that suggests a linear association and informally assess its fit by plotting and analyzing residuals, including the squares of the residuals, in order to improve its fit.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
GDA.DSP.2.12.b: : Use technology to find the least-squares line of best fit for two quantitative variables.
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
3.2.4: : Analyzing the association between two quantitative variables should involve statistical procedures, such as examining (with technology) the sum of squared deviations in fitting a linear model, analyzing residuals for patterns, generating a least-squares regression line and finding a correlation coefficient, and differentiating between correlation and causation.
GDA.DSP.2.13: : Students will… Compute (using technology) and interpret the correlation coefficient of a linear relationship.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
GDA.DSP.2.14: : Students will… Distinguish between correlation and causation.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
3.2.5: : Data analysis techniques can be used to develop models of contextual situations and to generate and evaluate possible solutions to real problems involving those contexts.
GDA.DSP.2.15: : Students will… Evaluate possible solutions to real-life problems by developing linear models of contextual situations and using them to predict unknown values.
GDA.DSP.2.15.a: : Use the linear model to solve problems in the context of the given data.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
GDA.DSP.2.15.b: : Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the given data.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
GDA.GM: : Geometry and Measurement
GDA.GM.1: : Measurement
4.1.1: : Areas and volumes of figures can be computed by determining how the figure might be obtained from simpler figures by dissection and recombination.
GDA.GM.1.16: : Students will… Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
GDA.GM.1.17: : Students will… Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.
GDA.GM.1.17.a: : Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
Surface and Lateral Areas of Pyramids and Cones
Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
GDA.GM.1.17.b: : Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
Surface and Lateral Areas of Pyramids and Cones
Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
4.1.2: : Constructing approximations of measurements with different tools, including technology, can support an understanding of measurement.
GDA.GM.1.18: : Students will… Given the coordinates of the vertices of a polygon, compute its perimeter and area using a variety of methods, including the distance formula and dynamic geometry software, and evaluate the accuracy of the results.
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
4.1.3: : When an object is the image of a known object under a similarity transformation, a length, area, or volume on the image can be computed by using proportional relationships.
GDA.GM.1.19: : Students will… Derive and apply the relationships between the lengths, perimeters, areas, and volumes of similar figures in relation to their scale factor.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GDA.GM.1.20: : Students will… Derive and apply the formula for the length of an arc and the formula for the area of a sector.
Radians
As factory belt operator, your job is to move boxes just the right distance on the belt, so they can be stamped for delivery. Your only controls are the radius and rotation of the belt’s wheel. How do you set these to get the distance right? See how this relates to arc length, and discover how radians help make this task easier. 5 Minute Preview
GDA.GM.2: : Transformations
4.2.1: : Applying geometric transformations to figures provides opportunities for describing the attributes of the figures preserved by the transformation and for describing symmetries by examining when a figure can be mapped onto itself.
GDA.GM.2.21: : Students will… Represent transformations and compositions of transformations in the plane (coordinate and otherwise) using tools such as tracing paper and geometry software.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GDA.GM.2.21.a: : Describe transformations and compositions of transformations as functions that take points in the plane as inputs and give other points as outputs, using informal and formal notation.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GDA.GM.2.21.b: : Compare transformations which preserve distance and angle measure to those that do not.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GDA.GM.2.22: : Students will… Explore rotations, reflections, and translations using graph paper, tracing paper, and geometry software.
GDA.GM.2.22.a: : Given a geometric figure and a rotation, reflection, or translation, draw the image of the transformed figure using graph paper, tracing paper, or geometry software.
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GDA.GM.2.22.b: : Specify a sequence of rotations, reflections, or translations that will carry a given figure onto another.
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
GDA.GM.2.22.c: : Draw figures with different types of symmetries and describe their attributes.
Holiday Snowflake Designer
Fold paper and cut in a certain way to make symmetrical snowflakes with six sides (similar to what can be found in nature) or with eight sides (an easier folding method). This simulation allows you to cut virtual paper on the computer screen with round dot or square dot "scissors" of various sizes before using physical paper. 5 Minute Preview
Quilting Bee (Symmetry)
Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
GDA.GM.2.23: : Students will… Develop definitions of rotation, reflection, and translation in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
4.2.2: : Showing that two figures are congruent involves showing that there is a rigid motion (translation, rotation, reflection, or glide reflection) or, equivalently, a sequence of rigid motions that maps one figure to the other.
GDA.GM.2.24: : Students will… Define congruence of two figures in terms of rigid motions (a sequence of translations, rotations, and reflections); show that two figures are congruent by finding a sequence of rigid motions that maps one figure to the other.
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
GDA.GM.2.25: : Students will… Verify criteria for showing triangles are congruent using a sequence of rigid motions that map one triangle to another.
GDA.GM.2.25.a: : Verify that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
GDA.GM.2.25.b: : Verify that two triangles are congruent if (but not only if) the following groups of corresponding parts are congruent: angle-side-angle (ASA), side-angle-side (SAS), side-side-side (SSS), and angle-angle-side (AAS).
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
4.2.3: : Showing that two figures are similar involves finding a similarity transformation (dilation or composite of a dilation with a rigid motion) or, equivalently, a sequence of similarity transformations that maps one figure onto the other.
GDA.GM.2.26: : Students will… Verify experimentally the properties of dilations given by a center and a scale factor.
GDA.GM.2.26.a: : Verify that a dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
GDA.GM.2.26.b: : Verify that the dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
GDA.GM.2.27: : Students will… Given two figures, determine whether they are similar by identifying a similarity transformation (sequence of rigid motions and dilations) that maps one figure to the other.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GDA.GM.2.28: : Students will… Verify criteria for showing triangles are similar using a similarity transformation (sequence of rigid motions and dilations) that maps one triangle to another.
GDA.GM.2.28.a: : Verify that two triangles are similar if and only if corresponding pairs of sides are proportional and corresponding pairs of angles are congruent.
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GDA.GM.2.28.b: : Verify that two triangles are similar if (but not only if) two pairs of corresponding angles are congruent (AA), the corresponding sides are proportional (SSS), or two pairs of corresponding sides are proportional and the pair of included angles is congruent (SAS).
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GDA.GM.3: : Geometric Arguments, Reasoning, and Proof
4.3.1: : Using technology to construct and explore figures with constraints provides an opportunity to explore the independence and dependence of assumptions and conjectures.
GDA.GM.3.29: : Students will… Find patterns and relationships in figures including lines, triangles, quadrilaterals, and circles, using technology and other tools.
GDA.GM.3.29.a: : Construct figures, using technology and other tools, in order to make and test conjectures about their properties.
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
GDA.GM.3.29.b: : Identify different sets of properties necessary to define and construct figures.
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
4.3.2: : Proof is the means by which we demonstrate whether a statement is true or false mathematically, and proofs can be communicated in a variety of ways (e.g., two-column, paragraph).
GDA.GM.3.30: : Students will… Develop and use precise definitions of figures such as angle, circle, perpendicular lines, parallel lines, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Classifying Quadrilaterals
Apply constraints to a quadrilateral, and then reshape and resize it. Classify the figure by its constraints. Explore the differences between the different kinds of quadrilaterals. 5 Minute Preview
Classifying Triangles
Place constraints on a triangle and determine what classifications must apply to the triangle. 5 Minute Preview
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
Parallel, Intersecting, and Skew Lines
Explore the properties of intersecting, parallel, and skew lines as well as lines in the plane. Rotate the plane and lines in three-dimensional space to ensure a full understanding of these objects. 5 Minute Preview
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
GDA.GM.3.31: : Students will… Justify whether conjectures are true or false in order to prove theorems and then apply those theorems in solving problems, communicating proofs in a variety of ways, including flow chart, two-column, and paragraph formats.
GDA.GM.3.31.a: : Investigate, prove, and apply theorems about lines and angles, including but not limited to: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; the points on the perpendicular bisector of a line segment are those equidistant from the segment's endpoints.
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
Parallel, Intersecting, and Skew Lines
Explore the properties of intersecting, parallel, and skew lines as well as lines in the plane. Rotate the plane and lines in three-dimensional space to ensure a full understanding of these objects. 5 Minute Preview
GDA.GM.3.31.b: : Investigate, prove, and apply theorems about triangles, including but not limited to: the sum of the measures of the interior angles of a triangle is 180°; the base angles of isosceles triangles are congruent; the segment joining the midpoints of two sides of a triangle is parallel to the third side and half the length; a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem using triangle similarity.
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Congruence in Right Triangles
Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
GDA.GM.3.31.c: : Investigate, prove, and apply theorems about parallelograms and other quadrilaterals, including but not limited to both necessary and sufficient conditions for parallelograms and other quadrilaterals, as well as relationships among kinds of quadrilaterals.
Classifying Quadrilaterals
Apply constraints to a quadrilateral, and then reshape and resize it. Classify the figure by its constraints. Explore the differences between the different kinds of quadrilaterals. 5 Minute Preview
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
4.3.3: : Proofs of theorems can sometimes be made with transformations, coordinates, or algebra; all approaches can be useful, and in some cases one may provide a more accessible or understandable argument than another.
GDA.GM.3.33: : Students will… Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems.
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
GDA.GM.4: : Solving Applied Problems and Modeling in Geometry
4.4.1: : Recognizing congruence, similarity, symmetry, measurement opportunities, and other geometric ideas, including right triangle trigonometry, in real-world contexts provides a means of building understanding of these concepts and is a powerful tool for solving problems related to the physical world in which we live.
GDA.GM.4.34: : Students will… Use congruence and similarity criteria for triangles to solve problems in real-world contexts.
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
GDA.GM.4.35: : Students will… Discover and apply relationships in similar right triangles.
GDA.GM.4.35.a: : Derive and apply the constant ratios of the sides in special right triangles (45°-45°-90° and 30°-60°-90°).
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
GDA.GM.4.35.b: : Use similarity to explore and define basic trigonometric ratios, including sine ratio, cosine ratio, and tangent ratio.
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
GDA.GM.4.35.c: : Explain and use the relationship between the sine and cosine of complementary angles.
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
GDA.GM.4.35.d: : Demonstrate the converse of the Pythagorean Theorem.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
GDA.GM.4.35.e: : Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems, including finding areas of regular polygons.
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
GDA.GM.4.36: : Students will… Use geometric shapes, their measures, and their properties to model objects and use those models to solve problems.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
GDA.GM.4.37: : Students will… Investigate and apply relationships among inscribed angles, radii, and chords, including but not limited to: the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
4.4.2: : Experiencing the mathematical modeling cycle in problems involving geometric concepts, from the simplification of the real problem through the solving of the simplified problem, the interpretation of its solution, and the checking of the solution’s feasibility, introduces geometric techniques, tools, and points of view that are valuable to problem-solving.
GDA.GM.4.38: : Students will… Use the mathematical modeling cycle involving geometric methods to solve design problems.
3D and Orthographic Views
Arrange blocks in a three-dimensional space so that the top view, front view, and side view match the target top view, front view, and side view. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote