- Home
- Find Gizmos
- Browse by Standard (USA)
- Alabama Standards
- Mathematics: Geometry

# West Virginia - Mathematics: Geometry

## College- and Career-Readiness Standards | Adopted: 2015

### CPC: : Congruence, Proof and Constructions

1.1: : Experiment with transformations in the plane.

CPC.M.GHS.1: : Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Chords and Arcs

Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview

Constructing Parallel and Perpendicular Lines

Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview

Parallel, Intersecting, and Skew Lines

Explore the properties of intersecting, parallel, and skew lines as well as lines in the plane. Rotate the plane and lines in three-dimensional space to ensure a full understanding of these objects. 5 Minute Preview

CPC.M.GHS.2: : Represent transformations in the plane using, for example, transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

Reflections

Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview

Rotations, Reflections, and Translations

Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview

Translations

Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview

CPC.M.GHS.3: : Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

Reflections

Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview

Rotations, Reflections, and Translations

Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview

CPC.M.GHS.4: : Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Reflections

Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview

Rotations, Reflections, and Translations

Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview

Translations

Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview

CPC.M.GHS.5: : Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, for example, graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Reflections

Rotations, Reflections, and Translations

Translations

Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview

1.2: : Understand congruence in terms of rigid motions.

CPC.M.GHS.6: : Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

Reflections

Rotations, Reflections, and Translations

Translations

1.3: : Prove geometric theorems.

CPC.M.GHS.9: : Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.

Constructing Parallel and Perpendicular Lines

Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview

Investigating Angle Theorems

Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview

Segment and Angle Bisectors

Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview

CPC.M.GHS.10: : Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Concurrent Lines, Medians, and Altitudes

Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview

Congruence in Right Triangles

Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview

Isosceles and Equilateral Triangles

Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview

Proving Triangles Congruent

Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview

Triangle Angle Sum

Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview

Triangle Inequalities

Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview

CPC.M.GHS.11: : Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Parallelogram Conditions

Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview

Special Parallelograms

Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview

1.4: : Make geometric constructions.

CPC.M.GHS.12: : Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

Constructing Congruent Segments and Angles

Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview

Constructing Parallel and Perpendicular Lines

Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview

Segment and Angle Bisectors

Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview

### SPT: : Similarity, Proof, and Trigonometry

2.1: : Understand similarity in terms of similarity transformations.

SPT.M.GHS.14: : Verify experimentally the properties of dilations given by a center and a scale factor.

SPT.M.GHS.14.a: : A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

SPT.M.GHS.14.b: : The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

SPT.M.GHS.15: : Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Dilations

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

SPT.M.GHS.16: : Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Proving Triangles Congruent

Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

2.2: : Prove theorems involving similarity.

SPT.M.GHS.17: : Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.

Congruence in Right Triangles

Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview

Proving Triangles Congruent

Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Similarity in Right Triangles

Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview

SPT.M.GHS.18: : Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Chords and Arcs

Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview

Perimeters and Areas of Similar Figures

Manipulate two similar figures and vary the scale factor to see what changes are possible under similarity. Explore how the perimeters and areas of two similar figures compare. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

Similarity in Right Triangles

Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview

2.3: : Define trigonometric ratios and solve problems involving right triangles.

SPT.M.GHS.19: : Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Sine, Cosine, and Tangent Ratios

Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview

SPT.M.GHS.20: : Explain and use the relationship between the sine and cosine of complementary angles.

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview

SPT.M.GHS.21: : Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Distance Formula

Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Pythagorean Theorem with a Geoboard

Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview

Sine, Cosine, and Tangent Ratios

Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview

### ETD: : Extending to Three Dimensions

3.1: : Explain volume formulas and use them to solve problems.

ETD.M.GHS.25: : Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.

Circumference and Area of Circles

Resize a circle and compare its radius, circumference, and area. 5 Minute Preview

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

Pyramids and Cones

Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview

ETD.M.GHS.26: : Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

Pyramids and Cones

Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview

3.2: : Visualize the relation between two dimensional and three-dimensional objects.

ETD.M.GHS.27: : Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

Pyramids and Cones

Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview

### CAG: : Connecting Algebra and Geometry Through Coordinates

4.1: : Use coordinates to prove simple geometric theorems algebraically.

CAG.M.GHS.29: : Use coordinates to prove simple geometric theorems algebraically. (e.g., Prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, square root of 3) lies on the circle centered at the origin and containing the point (0, 2).

Distance Formula

Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview

CAG.M.GHS.32: : Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. This standard provides practice with the distance formula and its connection with the Pythagorean theorem.

Distance Formula

Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview

4.2: : Translate between the geometric description and the equation for a conic section.

CAG.M.GHS.33: : Derive the equation of a parabola given a focus and directrix.

Parabolas

Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview

### CWC: : Circles With and Without Coordinates

5.1: : Understand and apply theorems about circles.

CWC.M.GHS.35: : Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

Chords and Arcs

Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview

Inscribed Angles

Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview

CWC.M.GHS.36: : Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Concurrent Lines, Medians, and Altitudes

Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview

5.2: : Find arc lengths and areas of sectors of circles.

CWC.M.GHS.38: : Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

Radians

As factory belt operator, your job is to move boxes just the right distance on the belt, so they can be stamped for delivery. Your only controls are the radius and rotation of the belt’s wheel. How do you set these to get the distance right? See how this relates to arc length, and discover how radians help make this task easier. 5 Minute Preview

5.3: : Translate between the geometric description and the equation for a conic section.

CWC.M.GHS.39: : Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

Circles

Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview

5.4: : Use coordinates to prove simple geometric theorems algebraically.

CWC.M.GHS.40: : Use coordinates to prove simple geometric theorems algebraically. (e.g., Prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, square root of 3) lies on the circle centered at the origin and containing the point (0, 2).)

Distance Formula

### AP: : Applications of Probability

6.1: : Understand independence and conditional probability and use them to interpret data.

AP.M.GHS.43: : Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

AP.M.GHS.44: : Recognize the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

AP.M.GHS.46: : Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

6.2: : Use the rules of probability to compute probabilities of compound events in a uniform probability model.

AP.M.GHS.47: : Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model.

Independent and Dependent Events

AP.M.GHS.49: : Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.

Independent and Dependent Events

AP.M.GHS.50: : Use permutations and combinations to compute probabilities of compound events and solve problems.

Permutations and Combinations

Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview

6.3: : Use probability to evaluate outcomes of decisions.

AP.M.GHS.51: : Use probabilities to make fair decisions (e.g., drawing by lots and/or using a random number generator).

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview

AP.M.GHS.52: : Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, and/or pulling a hockey goalie at the end of a game).

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview

Correlation last revised: 1/10/2023

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available January 1 and July 1.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote