- Home
- Find Gizmos
- Browse by Standard (CAN)
- Montana Standards
- Mathematics: 6th Grade
Newfoundland and Labrador - Mathematics: 6th Grade
NL--Newfoundland and Labrador Curriculum | Adopted: 2015
1: : Numeration
1.6N: : Number
1.6N1: : Demonstrate an understanding of place value, including numbers that are:
1.6N1.a: : greater than one million
Number Systems
Explore number systems and convert numbers from one base to another using counter beads in place-value columns. 5 Minute Preview
1.6N1.b: : less than one thousandth.
Adding Whole Numbers and Decimals (Base-10 Blocks)
Use base-10 blocks to model two numbers. Then combine the blocks to model the sum. Blocks of equal value can be exchanged from one area of the mat to the other to help understand carrying when adding. Four sets of blocks are available to model different place values. 5 Minute Preview
Comparing and Ordering Decimals
Use grids to model decimal numbers and compare them graphically. Then compare the numbers on a number line. 5 Minute Preview
Modeling Decimals (Area and Grid Models)
Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview
Modeling Whole Numbers and Decimals (Base-10 Blocks)
Model numbers with base-10 blocks. Drag flats, rods, and individual cubes onto a mat to model a number. Blocks can be exchanged from one area of the mat to the other. Four sets of blocks are available to model a variety of whole numbers and decimals. 5 Minute Preview
Subtracting Whole Numbers and Decimals (Base-10 Blocks)
Use base-10 blocks to model a starting number. Then subtract blocks from this number by dragging them into a subtraction bin. Blocks of equal value can be exchanged from one section of the mat to the other to help understand regrouping and borrowing. Four sets of blocks are available to model different place values. 5 Minute Preview
Sums and Differences with Decimals
Find the sum or difference of two decimal numbers using area models. Find the decimals and their sum or difference on a number line. 5 Minute Preview
Treasure Hunter (Decimals on the Number Line)
Drive a desert highway searching for buried treasure. Learn to use the car's tens, ones, tenths, and hundredths gears, along with a GPS system (number line), to find the right place to dig. Plot your findings on a zoomable number line map. Can you become a master Treasure Hunter? 5 Minute Preview
1.6N2: : Solve problems involving large whole numbers and decimal numbers.
1.6N2.2: : Estimate the solution to, and solve, a given problem.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
2: : Number Relationships
2.6N: : Number
2.6N3: : Demonstrate an understanding of factors and multiples by:
2.6N3.b: : identifying prime and composite numbers
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
2.6N3.c: : solving problems using multiples and factors.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
Operations with Radical Expressions
Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
2.6N3.1: : Determine all the whole number factors of a given number, using arrays.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
2.6N3.2: : Identify the factors for a given number, and explain the strategy used; e.g., concrete or visual representations, repeated division by prime numbers, factor trees.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
Operations with Radical Expressions
Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
2.6N3.3: : Solve a given problem involving factors or multiples.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
Operations with Radical Expressions
Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
2.6N3.4: : Identify multiples for a given number, and explain the strategy used to identify them.
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
2.6N3.5: : Provide an example of a prime number, and explain why it is a prime number.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
2.6N3.6: : Provide an example of a composite number, and explain why it is a composite number.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
2.6N3.7: : Sort a given set of numbers as prime and composite.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
2.6N3.8: : Explain why 0 and 1 are neither prime nor composite.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
2.6N7: : Demonstrate an understanding of integers, concretely, pictorially and symbolically.
2.6N7.2: : Describe contexts in which integers are used; e.g., on a thermometer.
Integers, Opposites, and Absolute Values
Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview
2.6N7.3: : Place given integers on a number line, and explain how integers are ordered.
Integers, Opposites, and Absolute Values
Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
2.6N7.4: : Order given integers in ascending or descending order.
Integers, Opposites, and Absolute Values
Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
2.6N7.5: : Compare two integers; represent their relationship using the symbols <, > and = and verify the relationship, using a number line.
Integers, Opposites, and Absolute Values
Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
2.6N9: : Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers).
Order of Operations
Select and evaluate the operations in an expression following the correct order of operations. 5 Minute Preview
2.6N9.1: : Explain, using examples, why there is a need to have a standardized order of operations.
Order of Operations
Select and evaluate the operations in an expression following the correct order of operations. 5 Minute Preview
2.6N9.2: : Apply the order of operations to solve multistep problems with and without technology; e.g., a computer, a calculator.
Order of Operations
Select and evaluate the operations in an expression following the correct order of operations. 5 Minute Preview
3: : Patterns in Mathematics
3.6PR: : Patterns and Relations (Patterns)
3.6PR1: : Demonstrate an understanding of the relationships within tables of values to solve problems.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
3.6PR1.1: : Create a concrete or pictorial representation of the relationship shown in a table of values.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
3.6PR1.2: : Describe the pattern within each column of a given table of values.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
3.6PR1.3: : State, using mathematical language, the relationship in a given table of values.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
3.6PR1.5: : Formulate a rule to describe the relationship between two columns of numbers in a table of values.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
3.6PR1.6: : Generate values in one column of a table of values, given values in the other column and a pattern rule.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
3.6PR1.7: : Create a table of values to record and reveal a pattern to solve a given problem.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
3.6PR1.8: : Identify missing elements in a given table of values.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
3.6PR3: : Represent generalizations arising from number relationships, using equations with letter variables.
3.6PR3.1: : Describe the relationship in a given table, using a mathematical expression.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
3.6PR3.2: : Represent a pattern rule, using a simple mathematical expression such as 4d or 2n + 1.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
3.6PR4: : Demonstrate and explain the meaning of preservation of equality, concretely and pictorially.
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
3.6PR4.5: : Write equivalent forms of a given equation by applying the preservation of equality and verify using concrete materials, e.g., 3b = 12 is same as 3b + 5 = 12 + 5 or 2r = 7 is the same as 3(2r) = 3(7).
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
4: : Data Relationships
4.6SP: : Statistics and Probability (Data Analysis)
4.6SP1: : Create, label and interpret line graphs to draw conclusions.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.6SP1.1: : Determine the common attributes (title, axes and intervals) of line graphs by comparing a given set of line graphs.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.6SP1.3: : Create a line graph from a given table of values or a given set of data.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.6SP1.4: : Interpret a given line graph to draw conclusions.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.6SP3: : Graph collected data, and analyze the graph to solve problems.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
4.6SP3.1: : Determine an appropriate type of graph for displaying a set of collected data, and justify the choice of graph.
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
4.6SP3.2: : Solve a given problem by graphing data and interpreting the resulting graph.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.6SP2: : Select, justify and use appropriate methods of collecting data, including:
4.6SP2.a: : questionnaires
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
4.6SP2.b: : experiments
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
4.6SP2.c: : databases
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
4.6SP2.d: : electronic media.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
4.6SP2.3: : Gather data for a given question by using electronic media, including selecting data from databases.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
4.6SP2.5: : Select a method for collecting data to answer a given question, and justify the choice.
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
4.6PR: : Patterns and Relations (Patterns)
4.6PR2: : Represent and describe patterns and relationships, using graphs and tables.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
4.6PR2.1: : Create a table of values from a given pattern or a given graph.
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
4.6PR2.2: : Translate a pattern to a table of values, and graph the table of values (limited to linear graphs with discrete elements).
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
4.6PR2.3: : Describe, using everyday language, orally or in writing, the relationship shown on a graph.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
4.6SS: : Shape and Space (Transformations)
4.6SS8: : Identify and plot points in the first quadrant of a Cartesian plane, using whole number ordered pairs.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
4.6SS8.1: : Label the axes of the first quadrant of a Cartesian plane, and identify the origin.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview
4.6SS8.2: : Plot a point in the first quadrant of a Cartesian plane, given its ordered pair.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview
4.6SS8.3: : Match points in the first quadrant of a Cartesian plane with their corresponding ordered pair.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview
4.6SS8.4: : Plot points in the first quadrant of a Cartesian plane with intervals of 1, 2, 5 or 10 on its axes, given whole number ordered pairs.
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
4.6SS8.5: : Draw shapes or designs, given ordered pairs, in the first quadrant of a Cartesian plane.
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
4.6SS8.6: : Draw shapes or designs in the first quadrant of a Cartesian plane, and identify the points used to produce them.
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
5: : Motion Geometry
5.6SS: : Shape and Space (Transformations)
5.6SS6: : Perform a combination of translations, rotations and/or reflections on a single 2-D shape, with and without technology, and draw and describe the image.
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS6.1: : Model a given set of successive translations, successive rotations or successive reflections of a 2-D shape.
Holiday Snowflake Designer
Fold paper and cut in a certain way to make symmetrical snowflakes with six sides (similar to what can be found in nature) or with eight sides (an easier folding method). This simulation allows you to cut virtual paper on the computer screen with round dot or square dot "scissors" of various sizes before using physical paper. 5 Minute Preview
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS6.3: : Describe the transformations performed on a 2-D shape to produce a given image.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS6.4: : Demonstrate that a 2-D shape and its transformation image are congruent.
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS6.5: : Model a given combination of two different types of transformations of a 2-D shape.
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
5.6SS6.7: : Perform and record one or more transformations of a 2-D shape that will result in a given image.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS7: : Perform a combination of successive transformations of 2-D shapes to create a design, and identify and describe the transformations.
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
5.6SS7.1: : Analyze a given design created by transforming one or more 2-D shapes, and identify the original shape(s) and the transformations used to create the design.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS7.2: : Create a design using one or more 2-D shapes, and describe the transformations used.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS9: : Perform and describe single transformations of a 2-D shape in the first quadrant of a Cartesian plane (limited to whole number vertices).
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
5.6SS9.1: : Identify the coordinates of the vertices of a given 2-D shape (limited to the first quadrant of a Cartesian plane).
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
6: : Ratio and Percent
6.6N: : Number
6.6N5: : Demonstrate an understanding of ratio, concretely, pictorially and symbolically.
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Proportions and Common Multipliers
Complete a proportion using a graphical model. Use counters to fill cells in the numerators and denominators given. Use the visual pattern to determine how many counters to put in the missing numerator or denominator. 5 Minute Preview
6.6N5.1: : Write a ratio from a given concrete or pictorial representation.
Beam to Moon (Ratios and Proportions) - Metric
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Proportions and Common Multipliers
Complete a proportion using a graphical model. Use counters to fill cells in the numerators and denominators given. Use the visual pattern to determine how many counters to put in the missing numerator or denominator. 5 Minute Preview
6.6N5.2: : Express a given ratio in multiple forms, such as 3:5, or 3 to 5.
Beam to Moon (Ratios and Proportions) - Metric
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Proportions and Common Multipliers
Complete a proportion using a graphical model. Use counters to fill cells in the numerators and denominators given. Use the visual pattern to determine how many counters to put in the missing numerator or denominator. 5 Minute Preview
Road Trip (Problem Solving)
Plan a cross-country road trip through various U.S. state capitals. First choose a vehicle to drive, and then fill up the tank with gas and go! Find the range and gas mileage of each vehicle, and discover the shortest path between two cities. 5 Minute Preview
6.6N5.4: : Provide a concrete or pictorial representation for a given ratio.
Beam to Moon (Ratios and Proportions) - Metric
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Proportions and Common Multipliers
Complete a proportion using a graphical model. Use counters to fill cells in the numerators and denominators given. Use the visual pattern to determine how many counters to put in the missing numerator or denominator. 5 Minute Preview
6.6N5.5: : Identify and describe ratios from real-life contexts, and record them symbolically.
Beam to Moon (Ratios and Proportions) - Metric
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Proportions and Common Multipliers
Complete a proportion using a graphical model. Use counters to fill cells in the numerators and denominators given. Use the visual pattern to determine how many counters to put in the missing numerator or denominator. 5 Minute Preview
Road Trip (Problem Solving)
Plan a cross-country road trip through various U.S. state capitals. First choose a vehicle to drive, and then fill up the tank with gas and go! Find the range and gas mileage of each vehicle, and discover the shortest path between two cities. 5 Minute Preview
6.6N5.6: : Demonstrate an understanding of equivalent ratios.
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
6.6N5.7: : Solve a given problem involving ratio.
Beam to Moon (Ratios and Proportions) - Metric
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Proportions and Common Multipliers
Complete a proportion using a graphical model. Use counters to fill cells in the numerators and denominators given. Use the visual pattern to determine how many counters to put in the missing numerator or denominator. 5 Minute Preview
Road Trip (Problem Solving)
Plan a cross-country road trip through various U.S. state capitals. First choose a vehicle to drive, and then fill up the tank with gas and go! Find the range and gas mileage of each vehicle, and discover the shortest path between two cities. 5 Minute Preview
6.6N6: : Demonstrate an understanding of percent (limited to whole numbers), concretely, pictorially and symbolically.
Percents and Proportions
Find a part from the percent and whole, a percent from the part and whole, or a whole from the part and percent using a graphic model. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
6.6N6.1: : Explain that “percent” means “out of 100.”
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents and Proportions
Find a part from the percent and whole, a percent from the part and whole, or a whole from the part and percent using a graphic model. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
6.6N6.2: : Explain that percent is a ratio out of 100.
Beam to Moon (Ratios and Proportions) - Metric
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents and Proportions
Find a part from the percent and whole, a percent from the part and whole, or a whole from the part and percent using a graphic model. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
6.6N6.3: : Use concrete materials and pictorial representations to illustrate a given percent.
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents and Proportions
Find a part from the percent and whole, a percent from the part and whole, or a whole from the part and percent using a graphic model. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
6.6N6.4: : Record the percent displayed in a given concrete or pictorial representation.
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents and Proportions
Find a part from the percent and whole, a percent from the part and whole, or a whole from the part and percent using a graphic model. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
6.6N6.5: : Identify and describe percents from real-life contexts, and record them symbolically.
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents and Proportions
Find a part from the percent and whole, a percent from the part and whole, or a whole from the part and percent using a graphic model. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
6.6N6.6: : Express a given percent as a fraction and a decimal.
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
6.6N6.7: : Solve a given problem involving percents.
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
7: : Fractions
7.6N: : Number
7.6N4: : Relate improper fractions to mixed numbers.
Dividing Mixed Numbers
Choose the correct steps to divide mixed numbers. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
Multiplying Mixed Numbers
Choose the correct steps to multiply mixed numbers. Use the step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
7.6N4.1: : Demonstrate, using models, that a given improper fraction represents a number greater than 1.
Dividing Mixed Numbers
Choose the correct steps to divide mixed numbers. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
7.6N4.2: : Translate a given improper fraction between concrete, pictorial and symbolic forms.
Dividing Mixed Numbers
Choose the correct steps to divide mixed numbers. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
7.6N4.3: : Express improper fractions as mixed numbers.
Dividing Mixed Numbers
Choose the correct steps to divide mixed numbers. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
Multiplying Mixed Numbers
Choose the correct steps to multiply mixed numbers. Use the step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
7.6N4.4: : Translate a given mixed number between concrete, pictorial and symbolic forms.
Dividing Mixed Numbers
Choose the correct steps to divide mixed numbers. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
7.6N4.5: : Express mixed numbers as improper fractions.
Dividing Mixed Numbers
Choose the correct steps to divide mixed numbers. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
Multiplying Mixed Numbers
Choose the correct steps to multiply mixed numbers. Use the step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
7.6N4.6: : Place a given set of fractions, including mixed numbers and improper fractions, on a number line, and explain strategies used to determine position.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
8: : Multiplication and Division of Decimals
8.6N: : Number
8.6N8: : Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1- digit natural number divisors).
Multiplying Decimals (Area Model)
Model the product of two decimals by finding the area of a rectangle. Estimate the area of the rectangle first. Then break the rectangle into several pieces and find the area of each piece (partial product). Add these areas together to find the whole area (product). 5 Minute Preview
8.6N8.1: : Predict products and quotients of decimals, using estimation strategies.
Multiplying Decimals (Area Model)
Model the product of two decimals by finding the area of a rectangle. Estimate the area of the rectangle first. Then break the rectangle into several pieces and find the area of each piece (partial product). Add these areas together to find the whole area (product). 5 Minute Preview
Square Roots
Explore the meaning of square roots using an area model. Use the side length of a square to find the square root of a decimal number or a whole number. 5 Minute Preview
8.6N8.2: : Solve a given problem that involves multiplication and division of decimals using multipliers from 0 to 9 and divisors from 1 to 9.
Multiplying Decimals (Area Model)
Model the product of two decimals by finding the area of a rectangle. Estimate the area of the rectangle first. Then break the rectangle into several pieces and find the area of each piece (partial product). Add these areas together to find the whole area (product). 5 Minute Preview
8.6N8.4: : Correct errors of decimal point placement in a given product or quotient without using paper and pencil.
Multiplying Decimals (Area Model)
Model the product of two decimals by finding the area of a rectangle. Estimate the area of the rectangle first. Then break the rectangle into several pieces and find the area of each piece (partial product). Add these areas together to find the whole area (product). 5 Minute Preview
Square Roots
Explore the meaning of square roots using an area model. Use the side length of a square to find the square root of a decimal number or a whole number. 5 Minute Preview
9: : Measurement
9.6SS: : Shape and Space (Measurement)
9.6SS1: : Demonstrate an understanding of angles by:
9.6SS1.b: : classifying angles according to their measure
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
9.6SS1.d: : determining angle measures in degrees
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
9.6SS1.2: : Classify a given set of angles according to their measure; e.g., acute, right, obtuse, straight, reflex.
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
9.6SS2: : Demonstrate that the sum of interior angles is:
9.6SS2.a: : 180° in a triangle
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Polygon Angle Sum
Derive the sum of the angles of a polygon by dividing the polygon into triangles and summing their angles. Vary the number of sides and determine how the sum of the angles changes. Dilate the polygon to see that the sum is unchanged. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
9.6SS2.b: : 360° in a quadrilateral.
Polygon Angle Sum
Derive the sum of the angles of a polygon by dividing the polygon into triangles and summing their angles. Vary the number of sides and determine how the sum of the angles changes. Dilate the polygon to see that the sum is unchanged. 5 Minute Preview
9.6SS2.1: : Explain, using models, that the sum of the interior angles of a triangle is the same for all triangles.
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
9.6SS3: : Develop and apply a formula for determining the:
9.6SS3.a: : perimeter of polygons
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
9.6SS3.b: : area of rectangles
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
9.6SS3.c: : volume of right rectangular prisms.
Balancing Blocks (Volume)
This Gizmo provides you with two challenges. First, use blocks to build a figure with a given volume. Then, try to balance the blocks on a platform that sits on the tip of a cone. The dimensions of the platform can be adjusted, and blocks can be added or deleted by clicking on the model. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
9.6SS3.1: : Explain, using models, how the perimeter of any polygon can be determined.
Fido's Flower Bed (Perimeter and Area)
Construct models of gardens on a grid using squares of sod. Fence the gardens to find and compare perimeters. Work with pre-built gardens made of 36 squares each to compare perimeters of shapes with equal areas. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
9.6SS3.2: : Generalize a rule (formula) for determining the perimeter of polygons, including rectangles and squares.
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
9.6SS3.3: : Solve a given problem involving the perimeter of polygons, the area of rectangles and/or the volume of right rectangular prisms.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Balancing Blocks (Volume)
This Gizmo provides you with two challenges. First, use blocks to build a figure with a given volume. Then, try to balance the blocks on a platform that sits on the tip of a cone. The dimensions of the platform can be adjusted, and blocks can be added or deleted by clicking on the model. 5 Minute Preview
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Fido's Flower Bed (Perimeter and Area)
Construct models of gardens on a grid using squares of sod. Fence the gardens to find and compare perimeters. Work with pre-built gardens made of 36 squares each to compare perimeters of shapes with equal areas. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
9.6SS3.4: : Explain, using models, how the area of any rectangle can be determined.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Fido's Flower Bed (Perimeter and Area)
Construct models of gardens on a grid using squares of sod. Fence the gardens to find and compare perimeters. Work with pre-built gardens made of 36 squares each to compare perimeters of shapes with equal areas. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
9.6SS3.5: : Generalize a rule (formula) for determining the area of rectangles.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
9.6SS3.6: : Explain, using models, how the volume of any right rectangular prism can be determined.
Balancing Blocks (Volume)
This Gizmo provides you with two challenges. First, use blocks to build a figure with a given volume. Then, try to balance the blocks on a platform that sits on the tip of a cone. The dimensions of the platform can be adjusted, and blocks can be added or deleted by clicking on the model. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
9.6SS3.7: : Generalize a rule (formula) for determining the volume of right rectangular prisms.
Balancing Blocks (Volume)
This Gizmo provides you with two challenges. First, use blocks to build a figure with a given volume. Then, try to balance the blocks on a platform that sits on the tip of a cone. The dimensions of the platform can be adjusted, and blocks can be added or deleted by clicking on the model. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
9.6PR: : Patterns and Relations (Variables and Equations)
9.6PR3: : Represent generalizations arising from number relationships, using equations with letter variables.
9.6PR3.3: : Write and explain the formula for finding the perimeter of any given rectangle.
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
9.6PR3.4: : Develop and justify equations using letter variables that illustrate the commutative property of addition and multiplication; e.g., a + b = b + a or a × b = b × a.
Addition of Polynomials
Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
Equivalent Algebraic Expressions I
Grumpy’s Restaurant is now hiring! As a new chef at this underwater bistro, you’ll learn the basics of manipulating algebraic expressions. Learn how to make equivalent expressions using the Commutative and Associative properties, how to handle pesky subtraction and division, and how to identify equivalent and non-equivalent expressions. 5 Minute Preview
Using Algebraic Expressions
Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview
9.6PR3.5: : Write and explain the formula for finding the area of any given rectangle.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
10: : 2-D Geometry
10.6SS: : Shape and Space (3-D Objects and 2-D Shapes)
10.6SS4: : Construct and compare triangles, including:
10.6SS4.d: : right
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
10.6SS4.1: : Identify the characteristics of a given set of triangles according to their sides and/or their interior angles.
Classifying Triangles
Place constraints on a triangle and determine what classifications must apply to the triangle. 5 Minute Preview
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
10.6SS4.2: : Sort a given set of triangles and explain the sorting rule.
Classifying Triangles
Place constraints on a triangle and determine what classifications must apply to the triangle. 5 Minute Preview
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
10.6SS4.3: : Draw a specified triangle, e.g., scalene.
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
11: : Probability
11.6SP: : Statistics and Probability (Chance and Uncertainty)
11.6SP4: : Demonstrate an understanding of probability by:
11.6SP4.a: : identifying all possible outcomes of a probability experiment
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.b: : differentiating between experimental and theoretical probability
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.c: : determining the theoretical probability of outcomes in a probability experiment
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.d: : determining the experimental probability of outcomes in a probability experiment
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.e: : comparing experimental results with the theoretical probability for an experiment.
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.1: : List the possible outcomes of a probability experiment, such as:
11.6SP4.1.a: : tossing a coin
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.1.b: : rolling a die with a given number of sides
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.1.c: : spinning a spinner with a given number of sectors.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.2: : Determine the theoretical probability of an outcome occurring for a given probability experiment.
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.3: : Predict the probability of a given outcome occurring for a given probability experiment by using theoretical probability.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.4: : Distinguish between theoretical probability and experimental probability, and explain the differences.
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.5: : Conduct a probability experiment, with or without technology, and compare the experimental results with the theoretical probability.
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
11.6SP4.6: : Explain that as the number of trials in a probability experiment increases, the experimental probability approaches theoretical probability of a particular outcome.
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote