- Home
- Find Gizmos
- Browse by Standard (USA)
- West Virginia Standards
- Mathematics: Geometry
Georgia - Mathematics: Geometry
GA--Standards of Excellence | Adopted: 2015
MGSE9-12.G.CO: : Congruence
MGSE9-12.G.CO.1: : Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
MGSE9-12.G.CO.2: : Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.4: : Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.5: : Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.6: : Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.8: : Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
MGSE9-12.G.CO.9: : Prove theorems about lines and angles.
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
MGSE9-12.G.CO.10: : Prove theorems about triangles.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
MGSE9-12.G.CO.11: : Prove theorems about parallelograms.
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
MGSE9-12.G.CO.13: : Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in a circle.
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
MGSE9-12.G.CO.1: : Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
MGSE9-12.G.CO.1: : Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
MGSE9-12.G.CO.10: : Prove theorems about triangles.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
MGSE9-12.G.CO.11: : Prove theorems about parallelograms.
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
MGSE9-12.G.CO.13: : Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in a circle.
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
MGSE9-12.G.CO.2: : Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
MGSE9-12.G.CO.2: : Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.4: : Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
MGSE9-12.G.CO.4: : Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.5: : Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
MGSE9-12.G.CO.5: : Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.6: : Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
MGSE9-12.G.CO.6: : Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.8: : Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)
MGSE9-12.G.CO.8: : Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
MGSE9-12.G.CO.9: : Prove theorems about lines and angles.
MGSE9-12.G.CO.9: : Prove theorems about lines and angles.
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
MGSE9-12.G.CO.10: : Prove theorems about triangles.
MGSE9-12.G.CO.10: : Prove theorems about triangles.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
MGSE9-12.G.CO.11: : Prove theorems about parallelograms.
MGSE9-12.G.CO.11: : Prove theorems about parallelograms.
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
MGSE9-12.G.CO.13: : Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in a circle.
MGSE9-12.G.CO.13: : Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in a circle.
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
MGSE9-12.G.SRT: : Similarity, Right Triangles, and Trigonometry
MGSE9-12.G.SRT.1a: : The dilation of a line not passing through the center of the dilation results in a parallel line and leaves a line passing through the center unchanged.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
MGSE9-12.G.SRT.1b: : The dilation of a line segment is longer or shorter according to the ratio given by the scale factor.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
MGSE9-12.G.SRT.2: : Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
MGSE9-12.G.SRT.4: : Prove theorems about triangles.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
MGSE9-12.G.SRT.5: : Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Perimeters and Areas of Similar Figures
Manipulate two similar figures and vary the scale factor to see what changes are possible under similarity. Explore how the perimeters and areas of two similar figures compare. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
MGSE9-12.G.SRT.6: : Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
MGSE9-12.G.SRT.8: : Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
MGSE9-12.G.SRT.1a: : The dilation of a line not passing through the center of the dilation results in a parallel line and leaves a line passing through the center unchanged.
MGSE9-12.G.SRT.1a: : The dilation of a line not passing through the center of the dilation results in a parallel line and leaves a line passing through the center unchanged.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
MGSE9-12.G.SRT.1b: : The dilation of a line segment is longer or shorter according to the ratio given by the scale factor.
MGSE9-12.G.SRT.1b: : The dilation of a line segment is longer or shorter according to the ratio given by the scale factor.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
MGSE9-12.G.SRT.2: : Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
MGSE9-12.G.SRT.2: : Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
MGSE9-12.G.SRT.4: : Prove theorems about triangles.
MGSE9-12.G.SRT.4: : Prove theorems about triangles.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
MGSE9-12.G.SRT.5: : Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
MGSE9-12.G.SRT.5: : Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Perimeters and Areas of Similar Figures
Manipulate two similar figures and vary the scale factor to see what changes are possible under similarity. Explore how the perimeters and areas of two similar figures compare. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
MGSE9-12.G.SRT.6: : Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
MGSE9-12.G.SRT.6: : Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
MGSE9-12.G.SRT.8: : Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
MGSE9-12.G.SRT.8: : Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
MGSE9-12.G.C: : Circles
MGSE9-12.G.CO.1: : Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
MGSE9-12.G.CO.2: : Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.4: : Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.5: : Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.6: : Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
MGSE9-12.G.CO.8: : Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)
Proving Triangles Congruent
Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview
MGSE9-12.G.CO.9: : Prove theorems about lines and angles.
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
MGSE9-12.G.CO.10: : Prove theorems about triangles.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
Triangle Inequalities
Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview
MGSE9-12.G.CO.11: : Prove theorems about parallelograms.
Parallelogram Conditions
Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
MGSE9-12.G.CO.13: : Construct an equilateral triangle, a square, and a regular hexagon, each inscribed in a circle.
Concurrent Lines, Medians, and Altitudes
Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
MGSE9-12.G.C.1: : Understand that all circles are similar.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
MGSE9-12.G.C.2: : Identify and describe relationships among inscribed angles, radii, chords, tangents, and secants. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
MGSE9-12.G.C.5: : Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
MGSE9-12.G.C.1: : Understand that all circles are similar.
MGSE9-12.G.C.1: : Understand that all circles are similar.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
MGSE9-12.G.C.2: : Identify and describe relationships among inscribed angles, radii, chords, tangents, and secants. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
MGSE9-12.G.C.2: : Identify and describe relationships among inscribed angles, radii, chords, tangents, and secants. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Inscribed Angles
Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview
MGSE9-12.G.C.5: : Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
MGSE9-12.G.C.5: : Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
MGSE9-12.G.GPE: : Expressing Geometric Properties with Equations
MGSE9-12.G.GPE.1: : Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
MGSE9-12.G.GPE.7: : Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
MGSE9-12.G.GPE.1: : Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
MGSE9-12.G.GPE.1: : Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
MGSE9-12.G.GPE.7: : Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
MGSE9-12.G.GPE.7: : Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
MGSE9-12.G.GMD: : Geometric Measurement and Dimension
MGSE9-12.G.GMD.1a: : Give informal arguments for the formulas of the circumference of a circle and area of a circle using dissection arguments and informal limit arguments.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
MGSE9-12.G.GMD.1b: : Give informal arguments for the formula of the volume of a cylinder, pyramid, and cone using Cavalieri’s principle.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
MGSE9-12.G.GMD.3: : Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
MGSE9-12.G.GMD.1a: : Give informal arguments for the formulas of the circumference of a circle and area of a circle using dissection arguments and informal limit arguments.
MGSE9-12.G.GMD.1a: : Give informal arguments for the formulas of the circumference of a circle and area of a circle using dissection arguments and informal limit arguments.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
MGSE9-12.G.GMD.1b: : Give informal arguments for the formula of the volume of a cylinder, pyramid, and cone using Cavalieri’s principle.
MGSE9-12.G.GMD.1b: : Give informal arguments for the formula of the volume of a cylinder, pyramid, and cone using Cavalieri’s principle.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
MGSE9-12.G.GMD.3: : Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
MGSE9-12.G.GMD.3: : Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
MGSE9-12.S.CP: : Conditional Probability and the Rules of Probability
MGSE9-12.S.CP.1: : Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not).
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
MGSE9-12.S.CP.2: : Understand that if two events A and B are independent, the probability of A and B occurring together is the product of their probabilities, and that if the probability of two events A and B occurring together is the product of their probabilities, the two events are independent.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
MGSE9-12.S.CP.3: : Understand the conditional probability of A given B as P (A and B)/P(B). Interpret independence of A and B in terms of conditional probability; that is, the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
MGSE9-12.S.CP.6: : Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in context.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
MGSE9-12.S.CP.1: : Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not).
MGSE9-12.S.CP.1: : Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not).
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
MGSE9-12.S.CP.2: : Understand that if two events A and B are independent, the probability of A and B occurring together is the product of their probabilities, and that if the probability of two events A and B occurring together is the product of their probabilities, the two events are independent.
MGSE9-12.S.CP.2: : Understand that if two events A and B are independent, the probability of A and B occurring together is the product of their probabilities, and that if the probability of two events A and B occurring together is the product of their probabilities, the two events are independent.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
MGSE9-12.S.CP.3: : Understand the conditional probability of A given B as P (A and B)/P(B). Interpret independence of A and B in terms of conditional probability; that is, the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
MGSE9-12.S.CP.3: : Understand the conditional probability of A given B as P (A and B)/P(B). Interpret independence of A and B in terms of conditional probability; that is, the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
MGSE9-12.S.CP.6: : Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in context.
MGSE9-12.S.CP.6: : Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in context.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote