- Home
- Find Gizmos
- Browse by Standard (CAN)
- Wyoming Standards
- Mathematics: 7th Grade
Newfoundland and Labrador - Mathematics: 7th Grade
NL--Newfoundland and Labrador Curriculum | Adopted: 2015
1: : Patterns and Relations
1.7PR: : Patterns and Relations
1.7PR2: : Create a table of values from a linear relation, graph the table of values, and analyze the graph to draw conclusions and solve problems.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
1.7PR2.1: : Create a table of values for a given linear relation by substituting values for the variable.
Direct and Inverse Variation
Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
1.7PR2.2: : Create a table of values, using a linear relation, and graph the table of values (limited to discrete elements).
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
1.7PR2.5: : Match a given set of linear relations to a given set of graphs.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
1.7PR2.6: : Match a given set of graphs to a given set of linear relations.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
1.7PR4: : Explain the difference between an expression and an equation.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
1.7PR4.1: : Explain what a variable is and how it is used in a given expression.
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
Solving Algebraic Equations I
Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
1.7PR4.2: : Identify and provide an example of a constant term, numerical coefficient and variable in an expression and an equation.
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
Solving Algebraic Equations I
Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
1.7PR4.3: : Provide an example of an expression and an equation, and explain how they are similar and different.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
1.7PR4.4: : Represent a given oral or written pattern using an algebraic expression.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
1.7PR4.5: : Represent a given oral or written pattern using an equation.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
1.7PR5: : Evaluate an expression, given the value of the variable(s).
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
1.7PR7: : Model and solve, concretely, pictorially and symbolically, problems that can be represented by linear equations of the form:
1.7PR7.a: : ax + b = c
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
1.7PR7.b: : ax - b = c
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
1.7PR7.c: : ax = b
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
1.7PR7.d: : x/a = b, a ≠ 0 where a, b and c are whole numbers.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
1.7PR7.1: : Model a given problem with a linear equation and solve the equation, using concrete models, e.g., counters, integer tiles.
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
2: : Integers
2.7N: : Number
2.7N6: : Demonstrate an understanding of addition and subtraction of integers, concretely, pictorially and symbolically.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
Addition of Polynomials
Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
2.7N6.1: : Explain, using concrete materials such as integer tiles and diagrams, that the sum of opposite integers is zero.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
2.7N6.2: : Solve a given problem involving the addition and subtraction of integers.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
Addition of Polynomials
Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
2.7N6.3: : Add two given integers, using concrete materials or pictorial representations, and record the process symbolically.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
Addition of Polynomials
Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
2.7N6.4: : Illustrate, using a number line, the results of adding negative and positive integers.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
2.7N6.5: : Subtract two given integers, using concrete materials or pictorial representations, and record the process symbolically.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
2.7N6.6: : Illustrate, using a number line, the results of subtracting negative and positive integers.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
3: : Fractions, Decimals, and Percents
3.7N: : Number
3.7N2: : Demonstrate an understanding of the addition, subtraction, multiplication and division of decimals to solve problems (for more than 1-digit divisors or 2-digit multipliers, the use of technology is expected).
Multiplying with Decimals
Multiply two decimals using a dynamic area model. On a grid, shade the region with width equal to one of the decimals and height equal to the other decimal and find the area of the region. 5 Minute Preview
Sums and Differences with Decimals
Find the sum or difference of two decimal numbers using area models. Find the decimals and their sum or difference on a number line. 5 Minute Preview
3.7N2.1: : Solve a given problem involving the addition of two or more decimal numbers.
Sums and Differences with Decimals
Find the sum or difference of two decimal numbers using area models. Find the decimals and their sum or difference on a number line. 5 Minute Preview
3.7N2.2: : Solve a given problem involving the subtraction of decimal numbers.
Sums and Differences with Decimals
Find the sum or difference of two decimal numbers using area models. Find the decimals and their sum or difference on a number line. 5 Minute Preview
3.7N2.4: : Solve a given problem involving the multiplication of decimal numbers with two digit multipliers (whole numbers or decimals) without the use of technology.
Multiplying with Decimals
Multiply two decimals using a dynamic area model. On a grid, shade the region with width equal to one of the decimals and height equal to the other decimal and find the area of the region. 5 Minute Preview
Square Roots
Explore the meaning of square roots using an area model. Use the side length of a square to find the square root of a decimal number or a whole number. 5 Minute Preview
3.7N2.6: : Solve a given problem involving the multiplication or division of decimal numbers with more than 2-digit multipliers or more than 1-digit divisors (whole numbers or decimals) with the use of technology.
Multiplying with Decimals
Multiply two decimals using a dynamic area model. On a grid, shade the region with width equal to one of the decimals and height equal to the other decimal and find the area of the region. 5 Minute Preview
Square Roots
Explore the meaning of square roots using an area model. Use the side length of a square to find the square root of a decimal number or a whole number. 5 Minute Preview
3.7N2.8: : Check the reasonableness of solutions using estimation.
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
3.7N3: : Solve problems involving percents from 1% to 100%.
3.7N3.1: : Express a given percent as a decimal or fraction.
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
3.7N3.2: : Solve a given problem that involves finding a percent.
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents and Proportions
Find a part from the percent and whole, a percent from the part and whole, or a whole from the part and percent using a graphic model. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
3.7N4: : Demonstrate an understanding of the relationship between positive terminating decimals and positive fractions and between positive repeating decimals and positive fractions.
3.7N4.2: : Match a given set of fractions to their decimal representations.
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
3.7N7: : Compare and order positive fractions, positive decimals (to thousandths) and whole numbers by using:
3.7N7.b: : place value
Comparing and Ordering Decimals
Use grids to model decimal numbers and compare them graphically. Then compare the numbers on a number line. 5 Minute Preview
3.7N7.c: : equivalent fractions and/or decimals.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Fraction Garden (Comparing Fractions)
Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
3.7N7.1: : Order the numbers of a given set that includes positive fractions, positive decimals and/or whole numbers in ascending or descending order, and verify the result using a variety of strategies.
Comparing and Ordering Decimals
Use grids to model decimal numbers and compare them graphically. Then compare the numbers on a number line. 5 Minute Preview
Integers, Opposites, and Absolute Values
Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
3.7N7.2: : Position fractions with like and unlike denominators from a given set on a number line, and explain strategies used to determine order.
Fraction Garden (Comparing Fractions)
Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
3.7N7.5: : Identify a number that would be between two given numbers in an ordered sequence or on a number line.
Comparing and Ordering Decimals
Use grids to model decimal numbers and compare them graphically. Then compare the numbers on a number line. 5 Minute Preview
Fraction Garden (Comparing Fractions)
Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview
Integers, Opposites, and Absolute Values
Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
4: : Circles and Area
4.7SS: : Shape and Space (Measurement)
4.7SS1: : Demonstrate an understanding of circles by:
4.7SS1.a: : describing the relationships among radius, diameter and circumference
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
4.7SS1.b: : relating circumference to pi
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
4.7SS1.c: : determining the sum of the central angles
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
4.7SS1.e: : solving problems involving the radii, diameters and circumferences of circles.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
4.7SS1.4: : Explain that, for all circles, pi is the ratio of the circumference to the diameter (C/d) and its value is approximately 3.14.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
4.7SS1.6: : Explain, using an illustration, that the sum of the central angles of a circle is 360°.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
4.7SS2: : Develop and apply a formula for determining the area of:
4.7SS2.a: : triangles
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
4.7SS2.b: : parallelograms
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
4.7SS2.c: : circles.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
4.7SS2.1: : Illustrate and explain how the area of a rectangle can be used to determine the area of a parallelogram.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
4.7SS2.2: : Generalize a rule to create a formula for determining the area of parallelograms.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
4.7SS2.3: : Solve a given problem involving the area of triangles, parallelograms and/or circles.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
4.7SS2.4: : Illustrate and explain how the area of a rectangle or a parallelogram can be used to determine the area of a triangle.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
4.7SS2.5: : Generalize a rule to create a formula for determining the area of triangles.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
4.7SS2.7: : Apply a formula for determining the area of a given circle.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
4.7SP: : Statistics and Probability (Data Analysis)
4.7SP3: : Construct, label and interpret circle graphs to solve problems.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.7SP3.2: : Identify common attributes of circle graphs, such as:
4.7SP3.2.a: : title, label or legend
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.7SP3.4: : Interpret a given circle graph to answer questions.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
4.7SP3.5: : Create and label a circle graph, with and without technology, to display a given set of data.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
5: : Operations with Fractions
5.7N: : Number
5.7N5: : Demonstrate an understanding of adding and subtracting positive fractions and mixed numbers, with like and unlike denominators, concretely, pictorially and symbolically (limited to positive sums and differences).
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
5.7N5.2: : Determine the sum of two given positive fractions with like denominators.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
5.7N5.3: : Simplify a given positive fraction by identifying the common factor between the numerator and denominator.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Multiplying Fractions
Multiply two fractions using an area model. Vary the vertical area to change one fraction and vary the horizontal area to change the other. Then examine the intersection of the areas to find the product. 5 Minute Preview
Toy Factory (Set Models of Fractions)
Create a set of stuffed animals: monkeys, giraffes, and rabbits. Toys can be painted red, green, or blue. Describe the makeup of the set (animals or colors) with fractions. Arrange the toys into groups to simplify the fractions. 5 Minute Preview
5.7N5.4: : Determine a common denominator for a given set of positive fractions.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
5.7N5.5: : Determine the sum of two given positive fractions with unlike denominators.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
5.7N5.6: : Model subtraction of positive fractions, using concrete representations, and record symbolically.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
5.7N5.7: : Determine the difference of two given positive fractions.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
5.7N5.8: : Model addition and subtraction of mixed numbers, using concrete representations, and record symbolically.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.7N5.9: : Determine the sum or difference of two mixed numbers.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.7N5.10: : Simplify the solution to a given problem involving the sum or difference of two positive fractions or mixed numbers.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
5.7N5.11: : Solve a given problem involving the addition or subtraction of positive fractions or mixed numbers and determine if the solution is reasonable.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
6: : Equations
6.7PR: : Patterns and Relations (Variables and Equations)
6.7PR3: : Demonstrate an understanding of preservation of equality by:
6.7PR3.a: : modelling preservation of equality, concretely, pictorially and symbolically
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
6.7PR3.b: : applying preservation of equality to solve equations.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
6.7PR3.2: : Write equivalent forms of a given equation by applying the preservation of equality, and verify, using concrete materials, e.g., 3b = 12 is the same as 3b + 5 = 12 + 5 or 2r = 7 is the same as 3(2r) = 3(7).
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
6.7PR3.3: : Solve a given problem by applying preservation of equality.
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
6.7PR6: : Model and solve, concretely, pictorially and symbolically, problems that can be represented by one-step linear equations of the form x + a = b, where a and b are integers.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
6.7PR6.2: : Draw a visual representation of the steps required to solve a given linear equation.
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
6.7PR6.3: : Solve a given problem using a linear equation.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
6.7PR7: : Model and solve, concretely, pictorially and symbolically, problems that can be represented by linear equations of the form:
6.7PR7.a: : ax + b = c
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
6.7PR7.b: : ax - b = c
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
6.7PR7.c: : ax = b
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
6.7PR7.d: : x/a = b, a ≠ 0 where a, b and c are whole numbers.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
6.7PR7.1: : Model a given problem with a linear equation and solve the equation using concrete models, e.g., counters, integer tiles.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
6.7PR7.4: : Solve a given problem, using a linear equation, and record the process.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
6.7PR7.5: : Verify the solution to a given linear equation, using concrete materials and diagrams.
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
7: : Data Analysis
7.7SP: : Statistics and Probability (Data Analysis)
7.7SP1: : Demonstrate an understanding of central tendency and range by:
7.7SP1.a: : determining the measures of central tendency (mean, median, mode) and range
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
7.7SP1.b: : determining the most appropriate measures of central tendency to report findings.
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
7.7SP1.1: : Determine mean, median and mode for a given set of data, and explain why these values may be the same or different.
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
7.7SP1.2: : Determine the range for a given set of data.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
7.7SP1.4: : Solve a given problem involving the measures of central tendency.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
7.7SP2: : Determine the effect on the mean, median and mode when an outlier is included in a data set.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
7.7SP2.1: : Analyze a given set of data to identify any outliers.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
7.7SP2.2: : Explain the effect of outliers on the measures of central tendency for a given data set.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
7.7SP2.3: : Identify outliers in a given set of data, and justify whether or not they are to be included in reporting the measures of central tendency.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
7.7SP2.4: : Provide examples of situations in which outliers would and would not be used in reporting the measures of central tendency.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
7.7SP4: : Express probabilities as ratios, fractions and percents.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP4.1: : Determine the probability of a given outcome occurring for a given probability experiment, and express it as a ratio, fraction and percent.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP4.2: : Provide an example of an event with a probability of 0 or 0% (impossible) and an example of an event with a probability of 1 or 100% (certain).
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
7.7SP5: : Identify the sample space (where the combined sample space has 36 or fewer elements) for a probability experiment involving two independent events.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
7.7SP5.1: : Provide an example of two independent events, such as:
7.7SP5.1.a: : spinning a four section spinner and rolling an eight-sided die
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP5.1.b: : tossing a coin and rolling a twelve-sided die
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP5.1.c: : tossing two coins
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP5.1.d: : rolling two dice and explain why they are independent.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP: : Statistics and Probability (Chance and Uncertainty)
7.7SP6: : Conduct a probability experiment to compare the theoretical probability (determined using a tree diagram, table or other graphic organizer) and experimental probability of two independent events.
7.7SP6.1: : Determine the theoretical probability of a given outcome involving two independent events.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP6.2: : Conduct a probability experiment for an outcome involving two independent events, with and without technology, to compare the experimental probability with the theoretical probability.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
7.7SP6.3: : Solve a given probability problem involving two independent events.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
8: : Geometry
8.7SS: : Shape and Space (3-D Objects and 2-D Shapes)
8.7SS3: : Perform geometric constructions, including:
8.7SS3.1: : Identify line segments on a given diagram that are either parallel or perpendicular.
Special Parallelograms
Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview
8.7SS3.7: : Draw the perpendicular bisector of a line segment, using more than one method, and verify the construction.
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
8.7SS3.9: : Draw the bisector of a given angle, using more than one method, and verify that the resulting angles are equal.
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
8.7SS: : Shape and Space (Transformations)
8.7SS4: : Identify and plot points in the four quadrants of a Cartesian plane, using integral ordered pairs.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
8.7SS4.1: : Label the axes of a four quadrant coordinate plane (or Cartesian plane), and identify the origin.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview
8.7SS4.2: : Identify the location of a given point in any quadrant of a Cartesian plane, using an integral ordered pair.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
8.7SS4.3: : Plot the point corresponding to a given integral ordered pair on a Cartesian plane with units of 1, 2, 5 or 10 on its axes.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Elevator Operator (Line Graphs)
Operate an elevator in an old apartment building. Pick up and drop off residents where they want to go. A line graph shows where the elevator traveled over time. Operate the elevator either by using the standard up and down controls, or by building a graph to program where you want it to go. 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
8.7SS4.4: : Draw shapes and designs in a Cartesian plane, using integral ordered pairs.
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
8.7SS4.5: : Create shapes and designs, and identify the points used to produce the shapes and designs, in any quadrant of a Cartesian plane.
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
8.7SS5: : Perform and describe transformations (translations, rotations or reflections) of a 2-D shape in all four quadrants of a Cartesian plane (limited to integral number vertices).
8.7SS5.1: : Identify the coordinates of the vertices of a given 2-D shape on a Cartesian plane.
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
8.7SS5.2: : Describe the horizontal and vertical movement required to move from a given point to another point on a Cartesian plane.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote