Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Mississippi Standards
  • Science: Grade Eight: Cause and Effect

Mississippi - Science: Grade Eight: Cause and Effect

College- and Career-Readiness Standards | Adopted: 2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

L.8: : Life Science


DCI.L.8.2: : Reproduction and Heredity

1.1.1: : Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. The process of passing genetic information to offspring is inheritance. During sexual reproduction, genetic information is passed to offspring resulting in similarities and differences between parental organisms and their offspring. There are advantages and disadvantages of the two types of reproduction.

L.8.2A: : Students will demonstrate an understanding of how sexual reproduction results in offspring with genetic variation while asexual reproduction results in offspring with identical genetic information.

L.8.2A.1: : Obtain and communicate information about the relationship of genes, chromosomes, and DNA, and construct explanations comparing their relationship to inherited characteristics.

Screenshot of DNA Analysis

DNA Analysis

Scan the DNA of frogs to produce DNA sequences. Use the DNA sequences to identify possible identical twins and to determine which sections of DNA code for skin color, eye color, and the presence or absence of spots. 5 Minute Preview


Lesson Info
Launch Gizmo

L.8.2A.2: : Create a diagram of mitosis and explain its role in asexual reproduction, which results in offspring with identical genetic information.

Screenshot of Cell Division

Cell Division

Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview


Lesson Info
Launch Gizmo

L.8.2A.3: : Construct explanations of how genetic information is transferred during meiosis.

Screenshot of Meiosis

Meiosis

Explore how sex cells are produced by the process of meiosis. Compare meiosis in male and female germ cells, and use crossovers to increase the number of possible gamete genotypes. Using meiosis and crossovers, create "designer" fruit fly offspring with desired trait combinations. 5 Minute Preview


Lesson Info
Launch Gizmo

L.8.2A.4: : Engage in discussion using models and evidence to explain that sexual reproduction produces offspring that have a new combination of genetic information different from either parent.

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 1 - Growth and Genetics

Fast Plants® 1 - Growth and Genetics

Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 2 - Mystery Parent

Fast Plants® 2 - Mystery Parent

In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inheritance

Inheritance

Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heredity and Traits - Middle School

Heredity and Traits - Middle School

As a bee scientist, students help a honey farm that has low honey production due to wasps. Students learn about bees, heredity and traits to determine which traits will help the bees defend their hives against the wasps. They then pick a new queen bee to pass on these traits to the bee colony. Video Preview


Lesson Info
STEM Cases

1.1.2: : Inheritance is the key process causing similarities between parental organisms and their offspring. Organisms that reproduce sexually transfer genetic information (DNA) to their offspring. This transfer of genetic information through inheritance leads to greater similarity among individuals within a population than between populations. Genetic changes can accumulate through natural selection or mutation that can lead to the evolution of species. Humans can manipulate genetic information using technology.

L.8.2B: : Students will demonstrate an understanding of the differences in inherited and acquired characteristics and how environmental factors (natural selection) and the use of technologies (selective breeding, genetic engineering) influence the transfer of genetic information.

L.8.2B.1: : Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms.

Screenshot of Effect of Environment on New Life Form

Effect of Environment on New Life Form

Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 1 - Growth and Genetics

Fast Plants® 1 - Growth and Genetics

Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inheritance

Inheritance

Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Measuring Trees

Measuring Trees

Measure the height, diameter, and circumference of trees in a forest. Count growth rings to determine the age of each tree. Grow the trees for several years and investigate how growth is affected by precipitation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seed Germination

Seed Germination

Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Temperature and Sex Determination

Temperature and Sex Determination

Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Temperature and Sex Determination - Metric

Temperature and Sex Determination - Metric

Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heredity and Traits - Middle School

Heredity and Traits - Middle School

As a bee scientist, students help a honey farm that has low honey production due to wasps. Students learn about bees, heredity and traits to determine which traits will help the bees defend their hives against the wasps. They then pick a new queen bee to pass on these traits to the bee colony. Video Preview


Lesson Info
STEM Cases

L.8.2B.3: : Use mathematical and computational thinking to analyze data and make predictions about the outcome of specific genetic crosses (monohybrid Punnett Squares) involving simple dominant/recessive traits.

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 1 - Growth and Genetics

Fast Plants® 1 - Growth and Genetics

Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 2 - Mystery Parent

Fast Plants® 2 - Mystery Parent

In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

L.8.2B.4: : Debate the ethics of artificial selection (selective breeding, genetic engineering) and the societal impacts of humans changing the inheritance of desired traits in organisms.

Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo

1.1.3: : Genes are located on the chromosomes of cells, with each chromosome pair containing two variations of each distinct gene. Each distinct gene chiefly controls the production of a specific protein, which in turn affects the traits of the individual. Changes (mutations) in genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits.

L.8.2C: : Students will demonstrate an understanding that chromosomes contain many distinct genes and that each gene holds the instructions for the production of a specific protein, which in turn affects the traits of an individual.

L.8.2C.2: : Construct scientific arguments from evidence to support claims about the potentially harmful, beneficial, or neutral effects of genetic mutations on organisms.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Human Karyotyping

Human Karyotyping

Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.L.8.4: : Adaptation and Diversity

1.2.1: : The scientific theory of evolution underlies the study of biology and provides an explanation for both the diversity of life on Earth and similarities of all organisms at the chemical, cellular, and molecular level. Multiple forms of scientific evidence support the theory of evolution. Adaptations are physical or behavioral changes that are inherited and enhance the ability of an organism to survive and reproduce in a particular environment.

L.8.4A: : Students will demonstrate an understanding of the process of natural selection, in which variations in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment.

L.8.4A.2: : Investigate to construct explanations about natural selection that connect growth, survival, and reproduction to genetic factors, environmental factors, food intake, and interactions with other organisms.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Natural Selection

Natural Selection

You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks

Rainfall and Bird Beaks

Study the thickness of birds' beaks over a five-year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.2: : Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. The traits of organisms that survive a change in the environment are inherited by offspring and become more common in the population. The traits of organisms that cannot survive a change in the environment are not passed to offspring and become less common. In separated populations, the changes can be large enough that the populations evolve to become separate species. Extinction occurs when the environment changes and the adaptive characteristics of a species, including its behaviors, are insufficient to allow its survival.

L.8.4B: : Students will demonstrate an understanding of how similarities and differences among living and extinct species provide evidence that changes have occurred in organisms over time and that similarity of characteristics provides evidence of common ancestry.

L.8.4B.1: : Analyze and interpret data (e.g., pictures, graphs) to explain how natural selection may lead to increases and decreases of specific traits in populations over time.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microevolution

Microevolution

Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview


Lesson Info
Launch Gizmo

L.8.4B.2: : Construct written and verbal explanations to describe how genetic variations of traits in a population increase some organisms’ probability of surviving and reproducing in a specific environment.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microevolution

Microevolution

Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Natural Selection

Natural Selection

You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks

Rainfall and Bird Beaks

Study the thickness of birds' beaks over a five-year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo

L.8.4B.4: : Analyze displays of pictorial data to compare and contrast embryological and homologous/analogous structures across multiple species to identify evolutionary relationships.

Screenshot of Embryo Development

Embryo Development

Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview


Lesson Info
Launch Gizmo

P.8: : Physical Science


DCI.P.8.6: : Motions, Forces, and Energy

2.1.1: : Waves have energy that is transferred when they interact with various types of matter. A repeating pattern of motion allows the transfer of energy from place to place without overall displacement of matter. All types of waves have some features in common. When waves interact, they affect each other resulting in changes to the resonance. Many modern technologies are based on waves and their interactions with matter.

P.8.6: : Students will demonstrate an understanding of the properties, behaviors, and application of waves.

P.8.6.1: : Collect, organize, and interpret data about the characteristics of sound and light waves to construct explanations about the relationship between matter and energy.

Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

P.8.6.3: : Conduct simple investigations about the performance of waves to describe their behavior (e.g., refraction, reflection, transmission, and absorption) as they interact with various materials (e.g., lenses, mirrors, and prisms).

Screenshot of Basic Prism

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Eyes and Vision 1 - Seeing Color

Eyes and Vision 1 - Seeing Color

Observe how different colors of light are reflected or absorbed by colored objects. Determine that white light is a combination of different colors of light, and that one or more component colors may be reflected when white light is shone on an object. Understand that we see an object when light reflected from the object enters our eye. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Laser Reflection

Laser Reflection

Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ray Tracing (Lenses)

Ray Tracing (Lenses)

Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ray Tracing (Mirrors)

Ray Tracing (Mirrors)

Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Refraction

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview


Lesson Info
STEM Cases
Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

P.8.6.4: : Use scientific processes to plan and conduct controlled investigations to conclude sound is a wave phenomenon that is characterized by amplitude and frequency.

Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Beats and Sine Waves

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

P.8.6.6: : Obtain and evaluate scientific information to explain the relationship between seeing color and the transmission, absorption, or reflection of light waves by various materials.

Screenshot of Basic Prism

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Color Absorption

Color Absorption

Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Eyes and Vision 1 - Seeing Color

Eyes and Vision 1 - Seeing Color

Observe how different colors of light are reflected or absorbed by colored objects. Determine that white light is a combination of different colors of light, and that one or more component colors may be reflected when white light is shone on an object. Understand that we see an object when light reflected from the object enters our eye. 5 Minute Preview


Lesson Info
Launch Gizmo

E.8: : Earth and Space Science


DCI.E.8.7: : Earth’s Structure and History

3.1.1: : Fossils are preserved remains or traces of organisms that lived in the past. Thousands of layers of sedimentary rock not only provide evidence of the history of Earth itself but also of changes in organisms whose fossil remains have been found in those layers. The collection of fossils and their placement in chronological order (e.g., through the location of rock layers or through radioactive dating) is collectively known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth.

E.8.7: : Students will demonstrate an understanding of geological evidence to analyze patterns in Earth’s major events, processes, and evolution in history.

E.8.7.2: : Create a model of the processes involved in the rock cycle and relate it to the fossil record.

Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo

E.8.7.3: : Construct and analyze scientific arguments to support claims that most fossil evidence is an indication of the diversity of life that was present on Earth and that relationships exist between past and current life forms.

Screenshot of Human Evolution - Skull Analysis

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.E.8.9: : Earth’s Systems and Cycles

3.2.1: : Earth systems and cycles are characterized by cause and effect relationships. All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. Landforms and water distribution result from constructive and destructive processes. Physical and chemical interactions among rocks, sediments, water, air, and organisms produce soil. Water’s movements—both on the land and underground—cause weathering and erosion. Plate tectonics is the unifying theory that explains the past and current crustal movements at the surface. This theory provides a framework for understanding geological history. Mapping land and water patterns based on investigations of rocks and fossils can help forecast the proximity and probability of future events.

E.8.9A: : Students will demonstrate an understanding that physical processes and major geological events (e.g., plate movement, volcanic activity, mountain building, weathering, erosion) are powered by the Sun and the Earth’s internal heat and have occurred over millions of years.

E.8.9A.1: : Investigate and explain how the flow of Earth’s internal energy drives the cycling of matter through convection currents between Earth’s surface and the deep interior causing plate movements.

Screenshot of Convection Cells

Convection Cells

Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview


Lesson Info
Launch Gizmo

E.8.9A.2: : Explore and debate theories of plate tectonics to form conclusions about past and current movements of rocks at Earth’s surface throughout history.

Screenshot of Building Pangaea

Building Pangaea

In 1915, Alfred Wegener proposed that all of Earth's continents were once joined in an ancient supercontinent he called Pangaea. Wegener's idea of moving continents led to the modern theory of plate tectonics. Create your own version of Pangaea by fitting Earth's landmasses together like puzzle pieces. Use evidence from fossils, rocks, and glaciers to refine your map. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

E.8.9A.3: : Map land and water patterns from various time periods and use rocks and fossils to report evidence of how Earth’s plates have moved great distances, collided, and spread apart.

Screenshot of Building Pangaea

Building Pangaea

In 1915, Alfred Wegener proposed that all of Earth's continents were once joined in an ancient supercontinent he called Pangaea. Wegener's idea of moving continents led to the modern theory of plate tectonics. Create your own version of Pangaea by fitting Earth's landmasses together like puzzle pieces. Use evidence from fossils, rocks, and glaciers to refine your map. 5 Minute Preview


Lesson Info
Launch Gizmo

E.8.9A.4: : Research and assess the credibility of scientific ideas to debate and discuss how Earth’s constructive and destructive processes have changed Earth’s surface at varying time and spatial scales.

Screenshot of Erosion Rates

Erosion Rates

Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of River Erosion

River Erosion

Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weathering

Weathering

Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview


Lesson Info
Launch Gizmo

E.8.9A.5: : Use models that demonstrate convergent and divergent plate movements that are responsible for most landforms and the distribution of most rocks and minerals within Earth’s crust.

Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

3.2.2: : Natural processes can cause sudden or gradual changes to Earth’s systems. Some may adversely affect humans such as volcanic eruptions or earthquakes. Mapping the history of natural hazards in a region, combined with an understanding of related geological forces can help forecast the locations and likelihoods of future events.

E.8.9B: : Students will demonstrate an understanding of natural hazards (volcanic eruptions, severe weather, earthquakes) and construct explanations for why some hazards are predictable and others are not.

E.8.9B.1: : Research and map various types of natural hazards to determine their impact on society.

Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases

E.8.9B.2: : Compare and contrast technologies that predict natural hazards to identify which types of technologies are most effective.

Screenshot of Earthquakes 2 - Determination of Epicenter

Earthquakes 2 - Determination of Epicenter

Locate the epicenter of an earthquake by analyzing seismic data from three recording stations. Measure difference in P- and S-wave arrival times, then use data from the Earthquakes 1 - Recording Station Gizmo to find the distance of the epicenter from each station. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases

E.8.9B.3: : Using an engineering design process, create mechanisms to improve community resilience, which safeguard against natural hazards (e.g., building restrictions in flood or tidal zones, regional watershed management, Firewise construction).

Screenshot of Earthquake-Proof Homes

Earthquake-Proof Homes

Design a house to withstand an earthquake and protect the people living inside. Select a location in San Francisco, then choose the design and materials for a foundation, frame, walls, and roof. Decide which extras to add to your home design. Test each house in an earthquake and assess the damages. Try to arrive at a house design that results in the least damage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Flood and Storm-Proof Homes

Flood and Storm-Proof Homes

Build a home to survive a flood or a hurricane and protect the people inside. Choose materials and a design for the foundation, frame, walls, and roof of the house. Add "extras" such as sand bags, storm shutters, and roof clips. Test your house in a flood or storm and see how well your design worked. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases

DCI.E.8.10: : Earth’s Resources

3.3.1: : Humans depend on Earth’s land, ocean, atmosphere, and biosphere for many different resources, both renewable and nonrenewable. Human activities have significantly altered the biosphere, sometimes damaging, or destroying natural habitats that could cause extinction or the threat of extinction of many species. Past and present geological events have distributed resources unevenly around the planet; therefore, there has been an increase in, and continued need for, technology to harness available resources and develop alternatives.

E.8.10: : Students will demonstrate an understanding that a decrease in natural resources is directly related to the increase in human population on Earth and must be conserved.

E.8.10.2: : Create and defend a proposal for reducing the environmental effects humans have on Earth (e.g., population increases, consumer demands, chemical pollution, deforestation, and change in average annual temperature).

Screenshot of Water Pollution

Water Pollution

Get to know the four main types of pollution present in the environment, and then look at a variety of real-world examples as you try to guess what type of pollution is represented by each situation. All of the real-world situations can be viewed every day in different parts of the world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

People are getting sick after swimming in the Dogwood River. The student acts as a microbiologist to monitor bacteria populations, construct a model of how pollution enters the river, and design a sustainable solution to minimize human impacts on the Dogwood River watershed. Video Preview


Lesson Info
STEM Cases
Screenshot of River Detective: The Case of the Missing Shad - Middle School

River Detective: The Case of the Missing Shad - Middle School

An important fish species, the American Shad, has disappeared from the James River in Virginia. Students take on the role of a junior River Watch member to investigate the shad population’s decline. They collect and analyze data about biotic and abiotic factors related to water quality and fish survival. Then students use this data to construct a model of cause-and-effect relationships in the James River watershed and design a solution to bring back this iconic fish. Video Preview


Lesson Info
STEM Cases
Screenshot of Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview


Lesson Info
STEM Cases
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

E.8.10.4: : Using an engineering design process, develop a system to capture and distribute thermal energy that makes renewable energy more readily available and reduces human impact on the environment (e.g., building solar water heaters, conserving home energy).

Screenshot of Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview


Lesson Info
STEM Cases

Correlation last revised: 5/19/2025

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap