Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Utah Standards
  • Science: 6th Grade

Utah - Science: 6th Grade

Utah Science with Engineering Education (SEEd) Standards | Adopted: 2015

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

6.1: : Structure and Motion Within the Solar System


6.1.1: : Develop and use a model of the Sun-Earth-Moon system to describe the cyclic patterns of lunar phases, eclipses of the Sun and Moon, and seasons. Examples of models could be physical, graphical, or conceptual.

Screenshot of 2D Eclipse

2D Eclipse

Manipulate the position of the Moon to model solar and lunar eclipses. View Earth's shadow, the Moon's shadow, or both. Observe the Moon and Sun from Earth during a partial and total eclipse. The sizes of the three bodies and the Earth-Moon distance can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of 3D Eclipse

3D Eclipse

Observe the motions of the Earth, Moon and Sun in three dimensions to investigate the causes and frequency of eclipses. Observe Earth's shadow crossing the Moon during a lunar eclipse, and the path of the Moon's shadow across Earth's surface during a solar eclipse. The angle of the Moon's orbit can be adjusted, as well as the distance of the Moon from the Earth. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Eclipse

Eclipse

Observe solar and lunar eclipses as the Moon orbits Earth. The full and partial shadows of the Moon and Earth can be displayed, and the Moon can also be dragged around Earth. See what the Moon and Sun look like from Earth during partial and total eclipses. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Moonrise, Moonset, and Phases

Moonrise, Moonset, and Phases

Gain an understanding of moonrise and moonset times by observing the relative positions of Earth and the Moon along with a view of the Moon from Earth. A line shows the horizon for a person standing on Earth so that moonrise and moonset times can be determined. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phases of the Moon

Phases of the Moon

Understand the phases of the Moon by observing the positions of the Moon, Earth and Sun. A view of the Moon from Earth is shown on the right as the Moon orbits Earth. Learn the names of Moon phases and in what order they occur. Click Play to watch the Moon go around, or click Pause and drag the Moon yourself. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons Around the World

Seasons Around the World

Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons in 3D

Seasons in 3D

Gain an understanding of the causes of seasons by observing Earth as it orbits the Sun in three dimensions. Observe the path of the Sun across the sky on any date and from any location. Create graphs of solar intensity and day length, and use collected data to describe and explain seasonal changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons: Earth, Moon, and Sun

Seasons: Earth, Moon, and Sun

Observe the motions of the Earth, Moon and Sun in three dimensions to explain Sunrise and Sunset, and to see how we define a day, a month, and a year. Compare times of Sunrise and Sunset for different dates and locations. Relate shadows to the position of the Sun in the sky, and relate shadows to compass directions. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seasons: Why do we have them?

Seasons: Why do we have them?

Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Summer and Winter

Summer and Winter

Observe the tilt of Earth's axis and the angle that sunlight strikes Earth on June 21 and December 21. Compare day lengths, temperatures, and the angle of the Sun's rays for any latitude. The tilt of the Earth's axis can be varied to see how this would affect seasons. 5 Minute Preview


Lesson Info
Launch Gizmo

6.1.2: : Develop and use a model to describe the role of gravity and inertia in orbital motions of objects in our solar system.

Screenshot of Gravity Pitch

Gravity Pitch

Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solar System

Solar System

Explore our solar system and learn the characteristics of each planet. Compare the sizes of planets and their distances from the Sun. Observe the speeds of planetary orbits and measure how long each planet takes to go around the Sun. 5 Minute Preview


Lesson Info
Launch Gizmo

6.1.3: : Use computational thinking to analyze data and determine the scale and properties of objects in the solar system. Examples of scale could include size or distance. Examples of properties could include layers, temperature, surface features, or orbital radius. Data sources could include Earth and space-based instruments such as telescopes or satellites. Types of data could include graphs, data tables, drawings, photographs, or models.

Screenshot of Solar System

Solar System

Explore our solar system and learn the characteristics of each planet. Compare the sizes of planets and their distances from the Sun. Observe the speeds of planetary orbits and measure how long each planet takes to go around the Sun. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weight and Mass

Weight and Mass

Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon. 5 Minute Preview


Lesson Info
Launch Gizmo

6.2: : Energy Affects Matter


6.2.1: : Develop models to show that molecules are made of different kinds, proportions and quantities of atoms. Emphasize understanding that there are differences between atoms and molecules, and that certain combinations of atoms form specific molecules. Examples of simple molecules could include water (H?O), atmospheric oxygen (O?), or carbon dioxide (CO?).

Screenshot of Molecule Builder

Molecule Builder

Create molecules using building blocks of carbon, hydrogen, oxygen, nitrogen, and other elements. Connect atoms by bonds, then create double or triple bonds if desired. For each completed molecule, write the chemical formula and, if the molecule is included in the database, observe the 3D structure. Create a variety of challenge molecules including cyclic molecules and isomers. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical and Physical Changes - Middle School

Chemical and Physical Changes - Middle School

The Secret Service recently arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and the evidence. Students learn about chemical and physical changes to recreate the methods used to make the coins as evidence for the trial. Video Preview


Lesson Info
STEM Cases

6.2.2: : Develop a model to predict the effect of heat energy on states of matter and density. Emphasize the arrangement of particles in states of matter (solid, liquid, or gas) and during phase changes (melting, freezing, condensing, and evaporating).

Screenshot of Phase Changes

Phase Changes

Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical and Physical Changes - Middle School

Chemical and Physical Changes - Middle School

The Secret Service recently arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and the evidence. Students learn about chemical and physical changes to recreate the methods used to make the coins as evidence for the trial. Video Preview


Lesson Info
STEM Cases

6.2.3: : Plan and carry out an investigation to determine the relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and evaluating data, and communicating the results of the investigation.

Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phase Changes

Phase Changes

Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Temperature and Particle Motion

Temperature and Particle Motion

Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared. 5 Minute Preview


Lesson Info
Launch Gizmo

6.2.4: : Design an object, tool, or process that minimizes or maximizes heat energy transfer. Identify criteria and constraints, develop a prototype for iterative testing, analyze data from testing, and propose modifications for optimizing the design solution. Emphasize demonstrating how the structure of differing materials allows them to function as either conductors or insulators.

Screenshot of Feel the Heat

Feel the Heat

Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview


Lesson Info
Launch Gizmo

6.3: : Earth's Weather Patterns and Climate


6.3.1: : Develop a model to describe how the cycling of water through Earth’s systems is driven by energy from the Sun, gravitational forces, and density

Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo

6.3.2: : Investigate the interactions between air masses that cause changes in weather conditions. Collect and analyze weather data to provide evidence for how air masses flow from regions of high pressure to low pressure causing a change in weather. Examples of data collection could include field observations, laboratory experiments, weather maps, or diagrams.

Screenshot of Coastal Winds and Clouds

Coastal Winds and Clouds

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coastal Winds and Clouds - Metric

Coastal Winds and Clouds - Metric

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coriolis Effect

Coriolis Effect

The Coriolis effect causes winds to be deflected as they move across Earth's surface, resulting in circular patterns of winds. This effect is caused by two factors, Earth's rotation and frame of reference. In the Coriolis Effect Gizmo, students will build their understanding of this phenomenon using the analogy of two kids playing catch: first on a train, then on a merry-go-round, and finally on Earth's surface. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hurricane Motion

Hurricane Motion

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hurricane Motion - Metric

Hurricane Motion - Metric

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weather Maps

Weather Maps

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weather Maps - Metric

Weather Maps - Metric

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo

6.3.3: : Develop and use a model to show how unequal heating of the Earth’s systems causes patterns of atmospheric and oceanic circulation that determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah regional weather patterns such as lake-effect snow or wintertime temperature inversions.

Screenshot of Coastal Winds and Clouds

Coastal Winds and Clouds

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coastal Winds and Clouds - Metric

Coastal Winds and Clouds - Metric

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Convection Cells

Convection Cells

Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview


Lesson Info
Launch Gizmo

6.4: : Stability and Change in Ecosystems


6.4.1: : Analyze data to provide evidence for the effects of resource availability on organisms and populations in an ecosystem. Ask questions to predict how changes in resource availability affects organisms in those ecosystems. Examples could include water, food, or living space in Utah environments.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks

Rainfall and Bird Beaks

Study the thickness of birds' beaks over a five-year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - Middle School

Ecosystems - Middle School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

6.4.2: : Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. Emphasize consistent interactions in different environments such as competition, predation, and mutualism.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Animal Group Behavior - Middle School

Animal Group Behavior - Middle School

A farmer in Africa is having problems with elephants eating her corn and cotton crops. As a wildlife biologist, students learn about animal group behavior and relationships of elephants and humans with bees. Students collect data from the farm and elephants to hypothesize and test solutions that will protect the crops without hurting the elephants. Video Preview


Lesson Info
STEM Cases
Screenshot of Ecosystems - Middle School

Ecosystems - Middle School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases
Screenshot of Fruit Production - Middle School

Fruit Production - Middle School

As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview


Lesson Info
STEM Cases

6.4.3: : Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. Emphasize food webs and the role of producers, consumers, and decomposers in various ecosystems. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, or deserts.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - Middle School

Ecosystems - Middle School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

6.4.4: : Construct an argument supported by evidence that the stability of populations is affected by changes to an ecosystem. Emphasize how changes to living and nonliving components in an ecosystem affect populations in that ecosystem. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, or deserts.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks

Rainfall and Bird Beaks

Study the thickness of birds' beaks over a five-year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - Middle School

Ecosystems - Middle School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases
Screenshot of Fruit Production - Middle School

Fruit Production - Middle School

As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview


Lesson Info
STEM Cases

Correlation last revised: 6/21/2024

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap