- Home
- Find Gizmos
- Browse by Standard (CAN)
- Arkansas Standards
- Science: 8th Grade
Northwest Territories - Science: 8th Grade
Alberta Program of Studies | Adopted: 2004
A: : Mix and Flow of Matter (Science and Technology Emphasis)
A.1: : Science, Technology and Society (STS) and Knowledge
A.1.3: : Investigate and compare the properties of gases and liquids; and relate variations in their viscosity, density, buoyancy and compressibility to the particle model of matter
A.1.3.2: : observe the mass and volume of a liquid, and calculate its density using the formula d = m/v [Note: This outcome does not require students to perform formula manipulations or solve for unknown terms other than the density.]
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
A.1.3.3: : compare densities of materials; and explain differences in the density of solids, liquids and gases, using the particle model of matter
Density Experiment: Slice and Dice
Drop a chunk of material in a beaker of water and observe whether it sinks or floats. Cut the chunk into smaller pieces of any size, and observe what happens as they are dropped in the beaker. The mass and volume of each chunk can be measured to gain a clear understanding of density and buoyancy. 5 Minute Preview
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
A.2: : Skill Outcomes (focus on problem solving)
A.2.1: : Initiating and Planning
A.2.1.1: : Ask questions about the relationships between and among observable variables, and plan investigations to address those questions
A.2.1.1.b: : identify questions to investigate, arising from practical problems and issues (e.g., identify questions, such as: â??What factors affect the speed with which a material dissolves?â??)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
A.2.1.1.d: : design an experiment, and identify the major variables (e.g., design or apply a procedure for measuring the solubility of different materials)
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
A.2.2: : Performing and Recording
A.2.2.1: : Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
A.2.2.1.a: : carry out procedures, controlling the major variables (e.g., carry out a test of the viscosity of different fluids)
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
A.2.2.1.b: : use instruments effectively and accurately for collecting data (e.g., measure the mass and volume of a given sample of liquid)
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
A.2.2.1.e: : organize data, using a format that is appropriate to the task or experiment (e.g., demonstrate the use of a database or spreadsheet for organizing information)
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
A.2.3: : Analyzing and Interpreting
A.2.3.1: : Analyze qualitative and quantitative data, and develop and assess possible explanations
A.2.3.1.b: : predict the value of a variable, by interpolating or extrapolating from graphical data (e.g., extrapolate results to predict how much solute will dissolve in a given solvent at a given temperature)
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
A.2.4: : Communication and Teamwork
A.2.4.1: : Work collaboratively on problems; and use appropriate language and formats to communicate ideas, procedures and results
A.2.4.1.c: : communicate questions, ideas, intentions, plans and results, using lists, notes in point form, sentences, data tables, graphs, drawings, oral language and other means (e.g., show the differences in flow rate, using a data table and diagrams)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
A.3: : Attitude Outcomes
A.3.1: : Interest in Science
A.3.1.1: : Show interest in science-related questions and issues, and pursue personal interests and career possibilities within science-related fields (e.g., attempt at home to repeat or extend a science investigation done at school; investigate applications of fluid properties in technologies used in the local community)
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
Temperature and Sex Determination - Metric
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview
B: : Cells and Systems (Nature of Science Emphasis)
B.1: : Science, Technology and Society (STS) and Knowledge
B.1.1: : Investigate living things; and identify and apply scientific ideas used to interpret their general structure, function and organization
B.1.1.2: : apply the concept of system in describing familiar organisms and analyzing their general structure and function
Pollination: Flower to Fruit
Label a diagram that illustrates the anatomy of a flower, and understand the function of each structure. Compare the processes of self pollination and cross pollination, and explore how fertilization takes place in a flowering plant. 5 Minute Preview
B.1.1.3: : illustrate and explain how different organisms have similar functions that are met in a variety of ways (e.g., recognize food gathering as a common function of animals, and note a variety of food-gathering structures)
Pollination: Flower to Fruit
Label a diagram that illustrates the anatomy of a flower, and understand the function of each structure. Compare the processes of self pollination and cross pollination, and explore how fertilization takes place in a flowering plant. 5 Minute Preview
B.1.2: : Investigate and describe the role of cells within living things
B.1.2.1: : describe the role of cells as a basic unit of life
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
B.1.2.2: : analyze similarities and differences between single-celled and multicelled organisms (e.g., compare, in general terms, an amoeba and a grizzly bear, a single-celled alga and a poplar tree)
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
B.1.2.3: : distinguish between plant and animal cells (e.g., distinguish between cell walls and cell membranes)
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
B.1.2.4: : describe the movement of gases and liquids into and out of cells during diffusion and osmosis, based on concentration differences [Note: This outcome requires a general understanding of processes, not a detailed analysis of mechanisms.]
Osmosis
Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview
B.1.3: : Interpret the healthy function of human body systems, and illustrate ways the body reacts to internal and external stimuli
B.1.3.1: : describe, in general terms, body systems for respiration, circulation, digestion, excretion and sensory awareness (e.g., describe how blood is circulated throughout the body to carry oxygen and nutrients to the bodyâ??s various tissues and organs)
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
B.1.3.2: : describe, in general terms, the role of individual organs and tissues in supporting the healthy functioning of the human body (e.g., the role of lungs in exchanging oxygen and carbon dioxide, the role of bronchia in providing a passageway for air)
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
B.1.3.3: : describe ways in which various types of cells contribute to the healthy functioning of the human body (e.g., describe the roles of individual cells in nerves, muscle, blood, skin and bone)
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
B.1.3.4: : describe changes in body functions in response to changing conditions (e.g., changes in heart rate in response to exercise, change in metabolism in response to lower temperature, reflex responses to stimuli)
Human Homeostasis
Adjust the levels of clothing, perspiration, and exercise to maintain a stable internal temperature as the external temperature changes. Water and blood sugar levels need to be replenished regularly, and fatigue occurs with heavy exercise. Severe hypothermia, heat stroke, or dehydration can result if internal stability is not maintained. 5 Minute Preview
B.1.4: : Describe areas of scientific investigation leading to new knowledge about body systems and to new medical applications
B.1.4.1: : identify examples of research into functions and dysfunctions of human cells, organs or body systems
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
B.1.4.2: : describe ways in which research about cells, organs and systems has brought about improvements in human health and nutrition (e.g., development of medicines; immunization procedures; diets based on the needs of organs, such as the heart)
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
B.1.4.3: : investigate and describe factors that affect the healthy function of the human respiratory, circulatory and digestive systems (e.g., investigate the effect of illness, aging or air quality on the function of the respiratory system)
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
B.2: : Skill Outcomes (focus on scientific inquiry)
B.2.1: : Initiating and Planning
B.2.1.1: : Ask questions about the relationships between and among observable variables, and plan investigations to address those questions
B.2.1.1.a: : identify questions to investigate (e.g., identify questions that arise from their own observations of plant and animal diversity)
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
B.2.2: : Performing and Recording
B.2.2.1: : Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
B.2.2.1.a: : use instrumentsâ??including microscopesâ??effectively and accurately for collecting data (e.g., use a microscope to produce a clear image of cells)
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
B.2.2.1.c: : observe and record data, and produce simple line drawings (e.g., draw cells and organisms)
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
B.2.2.1.d: : organize data, using a format that is appropriate to the task or experiment (e.g., compare the structure and function of two or more organisms, using charts and drawings)
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
B.2.3: : Analyzing and Interpreting
B.2.3.1: : Analyze qualitative and quantitative data, and develop and assess possible explanations
B.2.3.1.c: : compile and display data, by hand or computer, in a variety of formats, including diagrams, flow charts, tables, bar graphs and line graphs (e.g., prepare charts that compare structures of different organisms)
Earthquakes 1 - Recording Station
Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
B.2.4: : Communication and Teamwork
B.2.4.1: : Work collaboratively on problems; and use appropriate language and formats to communicate ideas, procedures and results
B.2.4.1.b: : communicate questions, ideas, intentions, plans and results, using lists, notes in point form, sentences, data tables, graphs, drawings, oral language and other means
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
B.2.4.1.d: : evaluate individual and group processes used in planning, problem solving, decision making and completing a task (e.g., evaluate processes used in completing a cooperative group project)
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
B.3: : Attitude Outcomes
B.3.1: : Interest in Science
B.3.1.1: : Show interest in science-related questions and issues, and pursue personal interests and career possibilities within science-related fields (e.g., select and explore media on topics related to the diversity of living things and the maintenance of health; express interest in science-related/ technology-related careers that contribute to the welfare of living things)
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
C: : Light and Optical Systems (Nature of Science Emphasis)
C.1: : Science, Technology and Society (STS) and Knowledge
C.1.1: : Investigate the nature of light and vision; and describe the role of invention, explanation and inquiry in developing our current knowledge
C.1.1.1: : identify challenges in explaining the nature of light and vision (e.g., recognize that past explanations for vision involved conflicting ideas about the interaction of eyes and objects viewed; identify challenges in explaining upside-down images, rainbows and mirages)
Basic Prism
Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview
C.1.2: : Investigate the transmission of light, and describe its behaviour using a geometric ray model
C.1.2.1: : investigate how light is reflected, transmitted and absorbed by different materials; and describe differences in the optical properties of various materials (e.g., compare light absorption of different materials; identify materials that transmit light; distinguish between clear and translucent materials; identify materials that will reflect a beam of light as a coherent beam)
Color Absorption
Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
C.1.2.3: : investigate, measure and describe the refraction of light through different materials (e.g., measure differences in light refraction through pure water, salt water and different oils)
Basic Prism
Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview
Refraction
Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview
C.1.3: : Investigate and explain the science of image formation and vision, and interpret related technologies
C.1.3.1: : demonstrate the formation of real images, using a double convex lens, and predict the effects of changes in the lens position on the size and location of images (e.g., demonstrate a method to produce a magnified or reduced image by altering the placement of one or more lenses)
Ray Tracing (Lenses)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview
C.2: : Skill Outcomes (focus on scientific inquiry)
C.2.1: : Initiating and Planning
C.2.1.1: : Ask questions about the relationships between and among observable variables, and plan investigations to address those questions
C.2.1.1.a: : identify questions to investigate (e.g., ask about the role of eyeglasses in improving vision)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
C.2.1.1.b: : define and delimit questions to facilitate investigation (e.g., rephrase a question, such as: â??Is plastic the best material to use in eyeglasses?â?? to become â??Which material refracts light the most?â??)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
C.2.1.1.c: : design an experiment, and identify the major variables
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
C.2.1.1.d: : state a prediction and a hypothesis based on background information or an observed pattern of events (e.g., predict the effect of dissolved materials on the refraction of light in a liquid)
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
Temperature and Sex Determination - Metric
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview
C.2.1.1.e: : formulate operational definitions of major variables and other aspects of their investigations (e.g., operationally define â??refractionâ?? and â??beam of lightâ??)
Basic Prism
Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview
C.2.2: : Performing and Recording
C.2.2.1: : Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
C.2.2.1.a: : carry out procedures, controlling the major variables
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
C.2.2.1.b: : observe and record data, and prepare simple line drawings (e.g., prepare a drawing of the path of a light beam toward and away from a mirror)
Laser Reflection
Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used. 5 Minute Preview
Ray Tracing (Mirrors)
Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image. 5 Minute Preview
C.2.2.1.c: : use instruments effectively and accurately for collecting data (e.g., measure angles of reflection; use a light sensor to measure light intensity)
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
C.2.2.1.d: : organize data, using a format that is appropriate to the task or experiment (e.g., demonstrate use of a database or spreadsheet for organizing information)
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
C.2.3: : Analyzing and Interpreting
C.2.3.1: : Analyze qualitative and quantitative data, and develop and assess possible explanations
C.2.3.1.a: : predict the value of a variable by interpolating or extrapolating from graphical data (e.g., predict the angle of a refracted beam of light)
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
C.2.3.1.c: : state a conclusion, based on experimental data, and explain how evidence gathered supports or refutes an initial idea (e.g., write a conclusion on the effect of dissolved materials on the refraction of light through water)
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
Temperature and Sex Determination - Metric
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview
C.2.4: : Communication and Teamwork
C.2.4.1: : Work collaboratively on problems; and use appropriate language and formats to communicate ideas, procedures and results
C.2.4.1.a: : receive, understand and act on the ideas of others (e.g., act on the suggestions of others in testing and manipulating various lens combinations)
Ray Tracing (Lenses)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview
Ray Tracing (Mirrors)
Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image. 5 Minute Preview
D: : Mechanical Systems (Science and Technology Emphasis)
D.1: : Science, Technology and Society (STS) and Knowledge
D.1.2: : Analyze machines by describing the structures and functions of the overall system, the subsystems and the component parts
D.1.2.1: : analyze a mechanical device, by:
D.1.2.1.a: : describing the overall function of the device
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
D.1.2.2: : identifying components that operate as simple machines
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
Levers
Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
Wheel and Axle
Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview
D.1.3: : Investigate and describe the transmission of force and energy between parts of a mechanical system
D.1.3.4: : identify work input and work output in joules for a simple machine or mechanical system (e.g., use a device to lift a measured mass an identified distance, then calculate the work output)
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
D.1.4: : Analyze the social and environmental contexts of science and technology, as they apply to the development of mechanical devices
D.1.4.1: : evaluate the design and function of a mechanical device in relation to its efficiency and effectiveness, and identify its impacts on humans and the environment
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
D.1.4.3: : illustrate how technological development is influenced by advances in science, and by changes in society and the environment
DNA Analysis
Scan the DNA of frogs to produce DNA sequences. Use the DNA sequences to identify possible identical twins and to determine which sections of DNA code for skin color, eye color, and the presence or absence of spots. 5 Minute Preview
D.2: : Skill Outcomes (focus on problem solving)
D.2.1: : Initiating and Planning
D.2.1.1: : Ask questions about the relationships between and among observable variables, and plan investigations to address those questions
D.2.1.1.a: : identify practical problems (e.g., identify problems related to the effectiveness or efficiency of a mechanical device)
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
D.2.1.1.e: : formulate operational definitions of major variables and other aspects of their investigations (e.g., define â??frictional forceâ?? by identifying a method to be used for measuring it)
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
D.2.2: : Performing and Recording
D.2.2.1: : Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
D.2.2.1.d: : carry out procedures, controlling the major variables (e.g., ensure that materials to be tested are of the same size and are tested under identical conditions)
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
D.2.2.1.e: : organize data, using a format that is appropriate to the task or experiment
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
D.2.3: : Analyzing and Interpreting
D.2.3.1: : Analyze qualitative and quantitative data, and develop and assess possible explanations
D.2.3.1.c: : identify and evaluate potential applications of findings (e.g., identify possible applications of a simple machine or mechanical system they have studied)
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
D.2.4: : Communication and Teamwork
D.2.4.1: : Work collaboratively on problems; and use appropriate language and formats to communicate ideas, procedures and results
D.2.4.1.b: : communicate practical problems, plans and results in a variety of ways, using written and oral language, data tables, graphs, drawings and other means (e.g., describe, using pictures and words, the transmission of a force through a mechanical system)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
D.3: : Attitude Outcomes
D.3.1: : Interest in Science
D.3.1.1: : Show interest in science-related questions and issues, and pursue personal interests and career possibilities within science-related fields (e.g., investigate examples of mechanical devices in their home and community; ask questions about techniques and materials used; show an interest in related careers and hobbies)
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
D.3.5: : Stewardship
D.3.5.1: : Demonstrate sensitivity and responsibility in pursuing a balance between the needs of humans and a sustainable environment (e.g., consider the impacts of their designs on society and the environment; participate in discussions on the appropriateness of a given technology)
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Electromagnetic Induction
Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview
E: : Freshwater and Saltwater Systems (Social and Environmental Emphasis)
E.1: : Science, Technology and Society (STS) and Knowledge
E.1.2: : Investigate and interpret linkages among landforms, water and climate
E.1.2.1: : describe the processes of erosion and deposition resulting from wave action and water flow, by:
E.1.2.1.b: : describing how waves and tides are generated and how they interact with shorelines
Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
E.1.3: : Analyze factors affecting productivity and species distribution in marine and freshwater environments
E.1.3.1: : investigate life forms found in fresh water and salt water, and identify and interpret examples of adaptations to these environments (e.g., describe and interpret examples of fish and invertebrate species found in a local freshwater environment)
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
E.1.3.3: : investigate and interpret examples of seasonal, short-term and long-term change in populations of living things found in aquatic environments (e.g., algal blooms, changes in local freshwater fish populations, cod and salmon stock depletion)
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
E.1.3.4: : analyze relationships between water quality and living things, and infer the quality of water based on the diversity of life supported by it
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
E.1.4: : Analyze human impacts on aquatic systems; and identify the roles of science and technology in addressing related questions, problems and issues
E.1.4.2: : identify current practices and technologies that affect water quality, evaluate environmental costs and benefits, and identify and evaluate alternatives (e.g., research and analyze alternatives for ensuring safe supplies of potable water; research, analyze and debate alternatives for a specific water quality issue, such as the location and design of a landfill, the protection of a natural waterway, the use of secondary and tertiary wastewater treatment, the salinization of soils due to irrigation, the eutrophication of ponds and streams due to excess use of phosphates in fertilizers and detergents, or a proposal to export water resources)
Water Pollution
Get to know the four main types of pollution present in the environment, and then look at a variety of real-world examples as you try to guess what type of pollution is represented by each situation. All of the real-world situations can be viewed every day in different parts of the world. 5 Minute Preview
E.1.4.4: : provide examples of problems that cannot be solved using scientific and technological knowledge alone (e.g., the need to prevent pollutants from entering aquatic environments, the need to avoid damage from ice sheets and icebergs)
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
E.2: : Skill Outcomes (focus on the use of research and inquiry skills to inform the decision-making process)
E.2.1: : Initiating and Planning
E.2.1.1: : Ask questions about the relationships between and among observable variables, and plan investigations to address those questions
E.2.1.1.b: : identify questions to investigate, arising from science-related issues
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
E.2.1.1.c: : select appropriate methods and tools for collecting relevant data and information (e.g., plan and conduct a search, using a wide variety of electronic sources)
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
E.2.1.1.d: : design an experiment, and identify the major variables (e.g., design an experiment to compare the characteristics of two water samples)
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
E.2.3: : Analyzing and Interpreting
E.2.3.1: : Analyze qualitative and quantitative data, and develop and assess possible explanations
E.2.3.1.b: : predict the value of a variable, by interpolating or extrapolating from graphical data (e.g., predict future stocks of fish based on long-term data)
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
E.2.3.1.c: : interpret patterns and trends in data, and infer and explain relationships among the variables (e.g., relate climates to proximity to oceans and to the characteristics of ocean currents)
Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
E.2.4: : Communication and Teamwork
E.2.4.1: : Work collaboratively on problems; and use appropriate language and formats to communicate ideas, procedures and results
E.2.4.1.b: : communicate questions, ideas, intentions, plans and results, using lists, notes in point form, sentences, data tables, graphs, drawings, oral language and other means (e.g., create a concept map, linking the different stages of the water cycle; prepare a multimedia presentation on changing climatic conditions and the effects on glaciers, ice sheets and water levels, incorporating graphics, audio, visuals and text gathered from remote sources)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
E.2.4.1.c: : evaluate individual and group processes used in planning, problem solving, decision making and completing a task (e.g., discuss advantages and disadvantages of different research methods and sources used to gather information on an ocean basin)
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Pendulum Clock
Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview
E.3: : Attitude Outcomes
E.3.6: : Safety
E.3.6.1: : Show concern for safety in planning, carrying out and reviewing activities (e.g., select safe methods and tools for collecting evidence and solving problems; readily alter a procedure to ensure the safety of members of the group)
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote