Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • California Standards
  • Science: Engineering and Architecture Pathway Standards

California - Science: Engineering and Architecture Pathway Standards

Career Technical Education | Adopted: 2013

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

1: : Engineering and Architecture Pathway Standards


B: : Engineering Technology Pathway

B3.0: : Identify the fundamentals of the theory, measurement, control, and applications of electrical energy, including alternating and direct currents.

B3.8: : Predict the effects of circuit conditions on the basis of measurements and calculations of voltage, current, resistance, and power.

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

B4.0: : Understand the concepts of physics that are fundamental to engineering technology.

B4.1: : Describe Newton?s laws and how they affect and define the movement of objects.

Screenshot of Atwood Machine

Atwood Machine

Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fan Cart Physics

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Force and Fan Carts

Force and Fan Carts

Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Save a Satellite - Middle School

Save a Satellite - Middle School

Students acting as spacecraft navigation engineers apply their knowledge of Newton’s Third Law of Motion to launch a communication satellite into a stable orbit around Earth. When students learn of an impending collision with space debris, they must use their knowledge of gravitational forces and Newton’s Laws to correctly maneuver their satellite to a new, stable orbit. Video Preview


Lesson Info
STEM Cases
Screenshot of Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Concussion rates in youth impact sports are high despite the use of helmets. In this STEM case, students act as materials scientists to learn about the physics behind concussions and helmet function. Students will use their understanding of Newton’s First and Second Laws of Motion to investigate helmet padding material to determine which material is best at reducing force during an impact. Video Preview


Lesson Info
STEM Cases

B4.2: : Explain how the laws of conservation of energy and momentum provide a way to predict and describe the movement of objects.

Screenshot of 2D Collisions

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Air Track

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Roller Coaster Physics

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sled Wars

Sled Wars

Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview


Lesson Info
Launch Gizmo

B4.4: : Explore the fundamentals and properties of waveforms and how waveforms may be used to carry energy.

Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Beats and Sine Waves

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

B4.5: : Analyze how electric and magnetic phenomena are related and know common practical applications.

Screenshot of Charge Launcher

Charge Launcher

Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electromagnetic Induction

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Magnetic Induction

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

B5.0: : Understand how the principles of force, work, rate, power, energy, and resistance relate to mechanical, electrical, fluid, and thermal engineering systems.

B5.1: : Differentiate between scalars and vectors.

Screenshot of Adding Vectors

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Vectors

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview


Lesson Info
Launch Gizmo

B5.2: : Solve problems by using the concept of vectoring to predict resultants.

Screenshot of Adding Vectors

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Vectors

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview


Lesson Info
Launch Gizmo

B5.3: : Compare and explore the six simple machines and their applications.

Screenshot of Ants on a Slant (Inclined Plane)

Ants on a Slant (Inclined Plane)

Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Levers

Levers

Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Trebuchet

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Wheel and Axle

Wheel and Axle

Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview


Lesson Info
Launch Gizmo

B5.4: : Evaluate how energy is transferred and predict the effects of resistance in mechanical, electrical, fluid, and thermal systems.

Screenshot of Feel the Heat

Feel the Heat

Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases

B5.5: : Formulate and solve problems by using the appropriate units applied in mechanical, electrical, fluid, and thermal engineering systems.

Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo

B6.0: : Employ the design process to solve analysis and design problems.

B6.5: : Demonstrate the process of developing multiple details, within design constraints, into a single solution.

Screenshot of Crumple Zones

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Feel the Heat

Feel the Heat

Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Beat the Heat: Tackling Urban Heat Islands Using the Science of Energy - Middle School

Lake City's latest heat wave has more people in the hospital than ever before. Juan, a local student admitted to the hospital, lives in one of the hottest neighborhoods in the city. Students are hired as the city's Chief Heat Officer to investigate and solve the problem. As the Chief Heat Officer, students look at land uses, surface air temperatures, and building materials across Lake City. Students will develop a system model to test several design solutions and give the mayor a proposal to beat the heat. Video Preview


Lesson Info
STEM Cases
Screenshot of Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

People are getting sick after swimming in the Dogwood River. The student acts as a microbiologist to monitor bacteria populations, construct a model of how pollution enters the river, and design a sustainable solution to minimize human impacts on the Dogwood River watershed. Video Preview


Lesson Info
STEM Cases
Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases
Screenshot of Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview


Lesson Info
STEM Cases

D: : Environmental Engineering Pathway

D2.0: : Understand the design process and how to solve analysis and design problems.

D2.6: : Build a prototype from plans and test it.

Screenshot of Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Concussion rates in youth impact sports are high despite the use of helmets. In this STEM case, students act as materials scientists to learn about the physics behind concussions and helmet function. Students will use their understanding of Newton’s First and Second Laws of Motion to investigate helmet padding material to determine which material is best at reducing force during an impact. Video Preview


Lesson Info
STEM Cases

D2.7: : Evaluate and redesign a prototype on the basis of collected test data.

Screenshot of Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Concussion rates in youth impact sports are high despite the use of helmets. In this STEM case, students act as materials scientists to learn about the physics behind concussions and helmet function. Students will use their understanding of Newton’s First and Second Laws of Motion to investigate helmet padding material to determine which material is best at reducing force during an impact. Video Preview


Lesson Info
STEM Cases

D3.0: : Understand the fundamentals of earth science as they relate to environmental engineering.

D3.1: : Know the fundamental stages of geochemical cycles

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hydrologic Cycle - High School

Hydrologic Cycle - High School

Paanee, a city in Northeast India, has been experiencing higher rates of flooding than normal. This surge in flooding has been caused by an increase in the hydrologic cycle’s activity. Students take on the role of a hydrologist to investigate why the hydrologic cycle’s rate has increased and what can be done to manage flooding and reduce flooding. Video Preview


Lesson Info
STEM Cases
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

D3.3: : Classify the three major groups of rocks, according to their origin, on the basis of texture and mineral composition.

Screenshot of Rock Classification

Rock Classification

Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview


Lesson Info
Launch Gizmo

D3.6: : Interpret and evaluate topographical maps and images.

Screenshot of Building Topographic Maps

Building Topographic Maps

Build a topographic map by flooding a three dimensional landscape with water and drawing contour lines. Draw a profile of a landscape based on the topographic map. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Reading Topographic Maps

Reading Topographic Maps

Understand how topographic maps work by creating a three-dimensional landscape and observing the corresponding contour lines. See how mountains, depressions, valleys and cliffs are represented on topographic maps. Fill in the landscape with water to demonstrate that contours are lines of constant elevation. 5 Minute Preview


Lesson Info
Launch Gizmo

D3.8: : Analyze soil erosion and identify the causes

Screenshot of Erosion Rates

Erosion Rates

Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of River Erosion

River Erosion

Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview


Lesson Info
Launch Gizmo

D4.0: : Understand the effects of the weather, the hydrosphere, and the atmosphere on the environment.

D4.1: : Know the common causes of atmospheric contamination.

Screenshot of Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview


Lesson Info
STEM Cases

D4.3: : Understand the relationship between the health of the marine environment and climate control.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo

D4.4: : Understand the effects of human activity on the atmospheric environment.

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview


Lesson Info
STEM Cases

D4.5: : Analyze and predict conditions of meteorological events.

Screenshot of Coastal Winds and Clouds

Coastal Winds and Clouds

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coastal Winds and Clouds - Metric

Coastal Winds and Clouds - Metric

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hurricane Motion

Hurricane Motion

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hurricane Motion - Metric

Hurricane Motion - Metric

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weather Maps

Weather Maps

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weather Maps - Metric

Weather Maps - Metric

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo

D4.6: : Analyze the mechanisms for air mass movement.

Screenshot of Convection Cells

Convection Cells

Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coriolis Effect

Coriolis Effect

The Coriolis effect causes winds to be deflected as they move across Earth's surface, resulting in circular patterns of winds. This effect is caused by two factors, Earth's rotation and frame of reference. In the Coriolis Effect Gizmo, students will build their understanding of this phenomenon using the analogy of two kids playing catch: first on a train, then on a merry-go-round, and finally on Earth's surface. 5 Minute Preview


Lesson Info
Launch Gizmo

D4.7: : Analyze atmospheric pressure and weather systems.

Screenshot of Coriolis Effect

Coriolis Effect

The Coriolis effect causes winds to be deflected as they move across Earth's surface, resulting in circular patterns of winds. This effect is caused by two factors, Earth's rotation and frame of reference. In the Coriolis Effect Gizmo, students will build their understanding of this phenomenon using the analogy of two kids playing catch: first on a train, then on a merry-go-round, and finally on Earth's surface. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hurricane Motion

Hurricane Motion

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hurricane Motion - Metric

Hurricane Motion - Metric

Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weather Maps

Weather Maps

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Weather Maps - Metric

Weather Maps - Metric

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo

D5.0: : Understand how the principles of force, work, rate, power, energy, and resistance relate to mechanical, electrical, fluid, and thermal engineering systems.

D5.1: : Know the six simple machines and their applications.

Screenshot of Ants on a Slant (Inclined Plane)

Ants on a Slant (Inclined Plane)

Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Levers

Levers

Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Trebuchet

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Wheel and Axle

Wheel and Axle

Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview


Lesson Info
Launch Gizmo

D5.2: : Know how energy is transferred and the effects of resistance in mechanical, electrical, fluid, and thermal systems.

Screenshot of Feel the Heat

Feel the Heat

Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Protecting Permafrost: Heat Transfer Highway - Middle School

Protecting Permafrost: Heat Transfer Highway - Middle School

Thawing permafrost threatens the stability of critical infrastructure in the Arctic community of Frostville, Alaska. Students take on the role of a civil engineer to design heat transfer solutions to protect permafrost in a warming climate. Video Preview


Lesson Info
STEM Cases

D5.3: : Understand scalars and vectors

Screenshot of Adding Vectors

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Vectors

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview


Lesson Info
Launch Gizmo

D5.4: : Solve problems by using the concept of vectoring to predict the resultant forces.

Screenshot of Adding Vectors

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Vectors

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview


Lesson Info
Launch Gizmo

D5.5: : Solve problems by using the appropriate units applied in mechanical, electrical, fluid, and thermal engineering systems.

Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo

D6.0: : Evaluate regional interactive systems and elements that create harmful environmental effects.

D6.1: : Describe the sources of, and impacts attributable to, pollution and contamination.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Pollution

Water Pollution

Get to know the four main types of pollution present in the environment, and then look at a variety of real-world examples as you try to guess what type of pollution is represented by each situation. All of the real-world situations can be viewed every day in different parts of the world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fruit Production - Middle School

Fruit Production - Middle School

As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview


Lesson Info
STEM Cases
Screenshot of Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

People are getting sick after swimming in the Dogwood River. The student acts as a microbiologist to monitor bacteria populations, construct a model of how pollution enters the river, and design a sustainable solution to minimize human impacts on the Dogwood River watershed. Video Preview


Lesson Info
STEM Cases
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases
Screenshot of Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview


Lesson Info
STEM Cases

D6.2: : Recognize the actions that cause resource depletion.

Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fruit Production - Middle School

Fruit Production - Middle School

As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview


Lesson Info
STEM Cases
Screenshot of River Detective: The Case of the Missing Shad - Middle School

River Detective: The Case of the Missing Shad - Middle School

An important fish species, the American Shad, has disappeared from the James River in Virginia. Students take on the role of a junior River Watch member to investigate the shad population’s decline. They collect and analyze data about biotic and abiotic factors related to water quality and fish survival. Then students use this data to construct a model of cause-and-effect relationships in the James River watershed and design a solution to bring back this iconic fish. Video Preview


Lesson Info
STEM Cases

D6.3: : Define the causes of erosion and soil depletion.

Screenshot of Erosion Rates

Erosion Rates

Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of River Erosion

River Erosion

Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview


Lesson Info
Launch Gizmo

D6.5: : Identify the sources of, and impacts attributable to, habitat alteration.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases
Screenshot of River Detective: The Case of the Missing Shad - Middle School

River Detective: The Case of the Missing Shad - Middle School

An important fish species, the American Shad, has disappeared from the James River in Virginia. Students take on the role of a junior River Watch member to investigate the shad population’s decline. They collect and analyze data about biotic and abiotic factors related to water quality and fish survival. Then students use this data to construct a model of cause-and-effect relationships in the James River watershed and design a solution to bring back this iconic fish. Video Preview


Lesson Info
STEM Cases

D7.0: : Understand the concepts of physics that are fundamental to engineering technology

D7.1: : Understand Newton?s laws and how they affect and define the movement of objects.

Screenshot of Atwood Machine

Atwood Machine

Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fan Cart Physics

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Force and Fan Carts

Force and Fan Carts

Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Save a Satellite - Middle School

Save a Satellite - Middle School

Students acting as spacecraft navigation engineers apply their knowledge of Newton’s Third Law of Motion to launch a communication satellite into a stable orbit around Earth. When students learn of an impending collision with space debris, they must use their knowledge of gravitational forces and Newton’s Laws to correctly maneuver their satellite to a new, stable orbit. Video Preview


Lesson Info
STEM Cases
Screenshot of Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School

Concussion rates in youth impact sports are high despite the use of helmets. In this STEM case, students act as materials scientists to learn about the physics behind concussions and helmet function. Students will use their understanding of Newton’s First and Second Laws of Motion to investigate helmet padding material to determine which material is best at reducing force during an impact. Video Preview


Lesson Info
STEM Cases

D7.2: : Understand how the laws of conservation of energy and momentum provide a way to predict and describe the movement of objects.

Screenshot of 2D Collisions

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Air Track

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Roller Coaster Physics

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sled Wars

Sled Wars

Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview


Lesson Info
Launch Gizmo

D7.3: : Understand how electric and magnetic phenomena are related and know common practical applications.

Screenshot of Charge Launcher

Charge Launcher

Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electromagnetic Induction

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Magnetic Induction

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

D7.4: : Analyze the fundamentals and properties of waveforms and how waveforms may be used to carry energy.

Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sound Beats and Sine Waves

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

Shake it Off: Understanding Wave Properties to Develop Earthquake Alert Systems - Middle School

The Bay Area of California experiences frequent earthquakes. Earthquakes are unpredictable and cause enormous damage that leads to casualties. Students take on the role of an earth scientist to investigate the properties of seismic waves to develop an early warning system that warns citizens of an incoming earthquake and reduces casualties. Video Preview


Lesson Info
STEM Cases
Screenshot of Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

Sound Off, Please!: Designing Solutions to Reduce Noise Pollution - Middle School

As an acoustic engineer, students will work with an urban planner to learn how noise pollution impacts a community. Students will develop a system model to test design solutions. Wave properties of sound and how sound interacts with different surfaces will be explored and used as evidence to reduce noise pollution. Video Preview


Lesson Info
STEM Cases

D9.0: : Identify the role and impact of waste management systems, and their operations, on the environment.

D9.1: : Understand the role of waste and storm water management systems, their operation, and their impact on the environment.

Screenshot of Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

People are getting sick after swimming in the Dogwood River. The student acts as a microbiologist to monitor bacteria populations, construct a model of how pollution enters the river, and design a sustainable solution to minimize human impacts on the Dogwood River watershed. Video Preview


Lesson Info
STEM Cases
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

D9.2: : Explore the causes and effects of pollution linked to wastewater treatment facilities.

Screenshot of Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

Microbiologist Mission: Reducing River Runoff and Pollution - Middle School

People are getting sick after swimming in the Dogwood River. The student acts as a microbiologist to monitor bacteria populations, construct a model of how pollution enters the river, and design a sustainable solution to minimize human impacts on the Dogwood River watershed. Video Preview


Lesson Info
STEM Cases
Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

D10.0: : Understand the field of land use management and its potential for environmental impact.

D10.2: : Describe the composition, role, and function of ecosystems, including trends affecting viability

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - Middle School

Ecosystems - Middle School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases
Screenshot of Ecosystems - High School

Ecosystems - High School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases
Screenshot of Fruit Production - Middle School

Fruit Production - Middle School

As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview


Lesson Info
STEM Cases
Screenshot of River Detective: The Case of the Missing Shad - Middle School

River Detective: The Case of the Missing Shad - Middle School

An important fish species, the American Shad, has disappeared from the James River in Virginia. Students take on the role of a junior River Watch member to investigate the shad population’s decline. They collect and analyze data about biotic and abiotic factors related to water quality and fish survival. Then students use this data to construct a model of cause-and-effect relationships in the James River watershed and design a solution to bring back this iconic fish. Video Preview


Lesson Info
STEM Cases

D11.0: : Research the role of air quality management and systems, their operations, and their impact on the environment.

D11.1: : Understand the elements that create outdoor air quality.

Screenshot of Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview


Lesson Info
STEM Cases

D11.2: : Summarize the causes of air pollutants and their chemical composition.

Screenshot of Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

Smelling in the Rain: Designing Solutions to Improve Air Quality - Middle School

A respiratory physiologist is concerned about the number of asthma attacks in children within her community. On certain days, the number is higher than the respiratory physiologist might expect. She thinks something in the environment is causing more rescue inhaler use on those days. As an air quality engineer, students will work collaboratively with a respiratory physiologist to learn how some air pollutants are released directly from sources while others are formed through chemical reactions. Students will develop a system model to test design solutions to recommend a plan to help decrease air pollution in a community with a record number of asthma cases in children. Video Preview


Lesson Info
STEM Cases

D12.0: : Implement processes to support energy efficiency.

D12.4: : Conduct an energy audit.

Screenshot of Household Energy Usage

Household Energy Usage

Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 9/2/2025

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap