- Home
- Find Gizmos
- Browse by Standard (USA)
- Mississippi Standards
- Science: Grade Six: Structure and Function
Mississippi - Science: Grade Six: Structure and Function
College- and Career-Readiness Standards | Adopted: 2018
L.6: : Life Science
DCI.L.6.1: : Hierarchical Organization
1.1.1: : Living things are distinguished from nonliving things by several characteristics. All living things are comprised of one (unicellular) or more (multicellular) cells, which are the smallest units of life. Cells carry out life functions and undergo cell division using specialized structures that allow them to acquire energy and water, grow, reproduce, dispose of waste, and survive. Multicellular organisms are organized in a hierarchy of increasing complexity with related, specialized structures and functions.
L.6.1: : Students will demonstrate an understanding that living things range from simple to complex organisms, are organized hierarchically, and function as whole living systems.
L.6.1.1: : Use argument supported by evidence in order to distinguish between living and non-living things, including viruses and bacteria.

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
L.6.1.3: : Develop and use models to explain how specific cellular components (cell wall, cell membrane, nucleus, chloroplast, vacuole, and mitochondria) function together to support the life of prokaryotic and eukaryotic organisms to include plants, animals, fungi, protists, and bacteria (not to include biochemical function of cells or cell part).

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview

Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
L.6.1.4: : Compare and contrast different cells in order to classify them as a protist, fungus, plant, or animal.

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
L.6.1.5: : Provide evidence that organisms are unicellular or multicellular.

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
L.6.1.6: : Develop and use models to show relationships among the increasing complexity of multicellular organisms (cells, tissues, organs, organ systems, organisms) and how they serve the needs of the organism.

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview

Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview

Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview

Frog Dissection
Use a scalpel, forceps, and pins to dissect realistic male and female frogs. Organs can be removed and placed into organ system diagrams. Once the dissections are complete, the frog organ systems can be compared. Zooming, rotating, and panning tools are available to examine the frog from any angle. 5 Minute Preview

Muscles and Bones
See how muscles, bones, and connective tissue work together to allow movement. Observe how muscle contraction arises from the interactions of thin and thick filaments in muscle cells. Using what you have learned, construct an arm that can lift a weight or throw a ball. Connective tissue, muscle composition, bone length, and tendon insertion point can all be manipulated to create an arm to lift the heaviest weight or throw a ball the fastest. 5 Minute Preview

Senses
Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain. 5 Minute Preview
DCI.L.6.3: : Ecology and Interdependence
1.2.1: : All organisms depend on biotic and abiotic factors for survival. When any environmental factor changes, a corresponding change in diversity and population of organisms will also occur. The environment and the organism in which it lives are therefore interdependent.
L.6.3: : Students will demonstrate an understanding of the relationships among survival, environmental changes, and diversity as they relate to the interactions of organisms, populations, and the environment.
L.6.3.1: : Use scientific reasoning to explain differences between biotic and abiotic factors that demonstrate what living organisms need to survive.

Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview

Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview

Measuring Trees
Measure the height, diameter, and circumference of trees in a forest. Count growth rings to determine the age of each tree. Grow the trees for several years and investigate how growth is affected by precipitation. 5 Minute Preview

Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview

River Detective: The Case of the Missing Shad - Middle School
An important fish species, the American Shad, has disappeared from the James River in Virginia. Students take on the role of a junior River Watch member to investigate the shad population’s decline. They collect and analyze data about biotic and abiotic factors related to water quality and fish survival. Then students use this data to construct a model of cause-and-effect relationships in the James River watershed and design a solution to bring back this iconic fish. Video Preview
L.6.3.3: : Analyze cause and effect relationships to explore how changes in the physical environment (limiting factors, natural disasters) can lead to population changes within an ecosystem.

Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview

Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview

Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview

Measuring Trees
Measure the height, diameter, and circumference of trees in a forest. Count growth rings to determine the age of each tree. Grow the trees for several years and investigate how growth is affected by precipitation. 5 Minute Preview

Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview

Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview

Rabbit Population by Season
Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview

Fruit Production - Middle School
As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview
L.6.3.4: : Investigate organism interactions in a competitive or mutually beneficial relationship (predation, competition, cooperation, or symbiotic relationships).

Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview

Animal Group Behavior - Middle School
A farmer in Africa is having problems with elephants eating her corn and cotton crops. As a wildlife biologist, students learn about animal group behavior and relationships of elephants and humans with bees. Students collect data from the farm and elephants to hypothesize and test solutions that will protect the crops without hurting the elephants. Video Preview

Ecosystems - Middle School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview

Fruit Production - Middle School
As an agricultural scientist, students help a strawberry farmer who is having problems with low fruit production. Students learn about the factors involved in fruit production including plant nutrients, pollination and bees, and the interaction with the environment. Video Preview

Microbiologist Mission: Reducing River Runoff and Pollution - Middle School
People are getting sick after swimming in the Dogwood River. The student acts as a microbiologist to monitor bacteria populations, construct a model of how pollution enters the river, and design a sustainable solution to minimize human impacts on the Dogwood River watershed. Video Preview
L.6.3.5: : Develop and use food chains, webs, and pyramids to analyze how energy is transferred through an ecosystem from producers (autotrophs) to consumers (heterotrophs, including humans) to decomposers.

Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview

Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview

Ecosystems - Middle School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
DCI.L.6.4: : Adaptation and Diversity
1.3.1: : Because living organisms are so diverse, scientists have created a system by which living things are organized into groups according to their characteristics (physical and/or genomic) for identification and research purposes. The kingdoms are very diverse but also have quite a bit in common. Organisms exhibit structural and behavioral characteristics such as adaptations, patterns of growth and development, and life cycles that increase their chances of reproduction and survival in a changing environment.
L.6.4: : Students will demonstrate an understanding of classification tools and models such as dichotomous keys to classify representative organisms based on the characteristics of the kingdoms: Archaebacteria, Eubacteria, Protists, Fungi, Plants, and Animals.
L.6.4.2: : Use classification methods to explore the diversity of organisms in kingdoms (animals, plants, fungi, protists, bacteria). Support claims that organisms have shared structural and behavioral characteristics.

Dichotomous Keys
Use dichotomous keys to identify and classify five types of organisms: California albatrosses, Canadian Rockies buttercups, Texas venomous snakes, Virginia evergreens, and Florida cartilagenous fishes. After you have classified every organism, try making your own dichotomous key! 5 Minute Preview
L.6.4.4: : Conduct investigations using a microscope or multimedia source to compare the characteristics of protists (euglena, paramecium, amoeba) and the methods they use to obtain energy and move through their environment (e.g., pond water).

Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
P.6: : Physical Science
DCI.P.6.6: : Motions, Forces, and Energy
2.1.1: : Newton’s Laws describe forces and motion affecting substances in various environments and situations. Motion is determined by the amount of force applied. Focusing on magnetic, frictional, and gravitational forces will provide an understanding of the relationship between distance and contact forces.
P.6.6: : Students will demonstrate an understanding of Newton’s laws of motion using real world models and examples.
P.6.6.1: : Use an engineering design process to create or improve safety devices (e.g., seat belts, car seats, helmets) by applying Newton’s Laws of motion. Use an engineering design process to define the problem, design, construct, evaluate, and improve the safety device.

Crumple Zones
Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview

Tackling Concussions: Testing Helmet Design Using Laws of Motion - Middle School
Concussion rates in youth impact sports are high despite the use of helmets. In this STEM case, students act as materials scientists to learn about the physics behind concussions and helmet function. Students will use their understanding of Newton’s First and Second Laws of Motion to investigate helmet padding material to determine which material is best at reducing force during an impact. Video Preview
P.6.6.2: : Use mathematical computation and diagrams to calculate the sum of forces acting on various objects.

Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
P.6.6.3: : Investigate and communicate ways to manipulate applied/frictional forces to improve movement of objects on various surfaces (e.g., athletic shoes, wheels on cars).

Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview

Force and Fan Carts
Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview

Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
P.6.6.4: : Compare and contrast magnetic, electric, frictional, and gravitational forces.

Charge Launcher
Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview
P.6.6.5: : Conduct investigations to predict and explain the motion of an object according to its position, direction, speed, and acceleration.

Distance-Time Graphs
Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time and Velocity-Time Graphs
Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview

Distance-Time and Velocity-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
P.6.6.6: : Investigate forces (gravity, friction, drag, lift, thrust) acting on objects (e.g., airplane, bicycle helmets). Use data to explain the differences between the forces in various environments.

Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview

Crumple Zones
Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview

Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
P.6.6.7: : Determine the relationships between the concepts of potential, kinetic, and thermal energy.

Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview

Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview

Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
E.6: : Earth and Space Science
DCI.E.6.8: : Earth and the Universe
3.1.1: : The hierarchical organization of the universe is the result of complex structure and function. Current theories suggest that time began with a period of extremely rapid expansion. Presently, Earth’s solar system consists of the Sun and other objects that are held in orbit by the Sun’s gravitational force. The interactions of the Earth, the Moon, and the Sun have effects that can be observed on Earth. Various technologies have aided in our understanding of Earth’s place in the universe.
E.6.8: : Students will demonstrate an understanding of Earth’s place in the universe and the interactions of the solar system (sun, planets, their moons, comets, and asteroids) using evidence from multiple scientific resources to explain how these objects are held in orbit around the Sun because of its gravitational pull.
E.6.8.4: : Obtain and evaluate information to model and compare the characteristics and movements of objects in the solar system (including planets, moons, asteroids, comets, and meteors).

Comparing Earth and Venus
Observe the motions of Venus and Earth as the planets move around the Sun. Measure the length of a day and a year on Earth and Venus, and compare the length of a solar day to the length of a sidereal day. 5 Minute Preview

Solar System
Explore our solar system and learn the characteristics of each planet. Compare the sizes of planets and their distances from the Sun. Observe the speeds of planetary orbits and measure how long each planet takes to go around the Sun. 5 Minute Preview

Solar System Explorer
Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified. 5 Minute Preview
E.6.8.5: : Construct explanations for how gravity affects the motion of objects in the solar system and tides on Earth.

Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview

Ocean Tides
Develop an understanding of ocean tides by comparing the depth of water near a dock to the positions of the Moon, Sun, and Earth. Determine the influence of the Moon and Sun on tides, and compare spring tides to neap tides. 5 Minute Preview

Solar System
Explore our solar system and learn the characteristics of each planet. Compare the sizes of planets and their distances from the Sun. Observe the speeds of planetary orbits and measure how long each planet takes to go around the Sun. 5 Minute Preview

Tides
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the positions of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview

Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
E.6.8.6: : Design models representing motions within the Sun-Earth-Moon system to explain phenomena observed from the Earth’s surface (positions of celestial bodies, day and year, moon phases, solar and lunar eclipses, and tides).

2D Eclipse
Manipulate the position of the Moon to model solar and lunar eclipses. View Earth's shadow, the Moon's shadow, or both. Observe the Moon and Sun from Earth during a partial and total eclipse. The sizes of the three bodies and the Earth-Moon distance can be adjusted. 5 Minute Preview

3D Eclipse
Observe the motions of the Earth, Moon and Sun in three dimensions to investigate the causes and frequency of eclipses. Observe Earth's shadow crossing the Moon during a lunar eclipse, and the path of the Moon's shadow across Earth's surface during a solar eclipse. The angle of the Moon's orbit can be adjusted, as well as the distance of the Moon from the Earth. 5 Minute Preview

Phases of the Moon
Understand the phases of the Moon by observing the positions of the Moon, Earth and Sun. A view of the Moon from Earth is shown on the right as the Moon orbits Earth. Learn the names of Moon phases and in what order they occur. Click Play to watch the Moon go around, or click Pause and drag the Moon yourself. 5 Minute Preview

Seasons: Earth, Moon, and Sun
Observe the motions of the Earth, Moon and Sun in three dimensions to explain Sunrise and Sunset, and to see how we define a day, a month, and a year. Compare times of Sunrise and Sunset for different dates and locations. Relate shadows to the position of the Sun in the sky, and relate shadows to compass directions. 5 Minute Preview

Tides
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the positions of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview

Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
Correlation last revised: 5/19/2025
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work

Start teaching with 20-40 Free Gizmos. See the full list.

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote