- Home
- Find Gizmos
- Browse by Standard (USA)
- Utah Standards
- Mathematics: Mathematics II

# West Virginia - Mathematics: Mathematics II

## College- and Career-Readiness Standards | Adopted: 2015

### RQ: : Relationships between Quantities

1.1: : Extend the properties of exponents to rational exponents.

RQ.M.2HS.2: : Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Operations with Radical Expressions

Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview

Simplifying Radical Expressions

Simplify a radical expression. Use step-by-step feedback to diagnose any incorrect steps. 5 Minute Preview

1.3: : Perform arithmetic operations with complex numbers.

RQ.M.2HS.4: : Know there is a complex number i such that i² = -1, and every complex number has the form a + bi with a and b real.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

RQ.M.2HS.5: : Use the relation i² = –1 and the commutative, associative and distributive properties to add, subtract and multiply complex numbers.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

1.4: : Perform arithmetic operations on polynomials.

RQ.M.2HS.6: : Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract and multiply polynomials.

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview

Addition of Polynomials

Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

### QF: : Quadratic Functions and Modeling

2.1: : Interpret functions that arise in applications in terms of a context.

QF.M.2HS.7: : For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

2.2: : Analyze functions using different representations.

QF.M.2HS.10: : Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

QF.M.2HS.10.a: : Graph linear and quadratic functions and show intercepts, maxima, and minima.

Point-Slope Form of a Line

Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Standard Form of a Line

Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

QF.M.2HS.10.b: : Graph square root, cube root and piecewise-defined functions, including step functions and absolute value functions.

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

QF.M.2HS.11: : Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

QF.M.2HS.11.a: : Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values and symmetry of the graph and interpret these in terms of a context.

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

QF.M.2HS.11.b: : Use the properties of exponents to interpret expressions for exponential functions. (e.g., Identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^(12t), y = (1.2)^(t/10), and classify them as representing exponential growth or decay.)

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview

2.3: : Build a function that models a relationship between two quantities.

QF.M.2HS.13: : Write a function that describes a relationship between two quantities.

QF.M.2HS.13.a: : Determine an explicit expression, a recursive process or steps for calculation from a context.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

QF.M.2HS.13.b: : Combine standard function types using arithmetic operations. (e.g., Build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview

2.4: : Build new functions from existing functions.

QF.M.2HS.14: : Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

Zap It! Game

Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview

2.5: : Construct and compare linear, quadratic, and exponential models and solve problems.

QF.M.2HS.16: : Using graphs and tables, observe that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically; or (more generally) as a polynomial function.

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

### EE: : Expressions and Equations

3.1: : Interpret the structure of expressions.

EE.M.2HS.17: : Interpret expressions that represent a quantity in terms of its context.

EE.M.2HS.17.a: : Interpret parts of an expression, such as terms, factors, and coefficients.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

EE.M.2HS.17.b: : Interpret complicated expressions by viewing one or more of their parts as a single entity.

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

EE.M.2HS.18: : Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x² – y²)(x² + y²).

Dividing Exponential Expressions

Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Exponents and Power Rules

Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview

Factoring Special Products

Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Multiplying Exponential Expressions

Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

3.2: : Write expressions in equivalent forms to solve problems.

EE.M.2HS.19: : Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

EE.M.2HS.19.a: : Factor a quadratic expression to reveal the zeros of the function it defines.

Quadratics in Factored Form

EE.M.2HS.19.b: : Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

Quadratics in Vertex Form

3.3: : Create equations that describe numbers or relationships.

EE.M.2HS.20: : Create equations and inequalities in one variable and use them to solve problems.

Exploring Linear Inequalities in One Variable

Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Solving Linear Inequalities in One Variable

Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

EE.M.2HS.21: : Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Quadratics in Polynomial Form

Quadratics in Vertex Form

EE.M.2HS.22: : Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (e.g., Rearrange Ohm’s law V = IR to highlight resistance R.)

Roots of a Quadratic

Solving Formulas for any Variable

Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview

3.4: : Solve equations and inequalities in one variable.

EE.M.2HS.23: : Solve quadratic equations in one variable.

EE.M.2HS.23.a: : Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)² = q that has the same solutions. Derive the quadratic formula from this form.

Roots of a Quadratic

EE.M.2HS.23.b: : Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.

Quadratics in Factored Form

Roots of a Quadratic

3.5: : Use complex numbers in polynomial identities and equations.

EE.M.2HS.24: : Solve quadratic equations with real coefficients that have complex solutions.

Roots of a Quadratic

EE.M.2HS.25: : Extend polynomial identities to the complex numbers.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

### AP: : Applications of Probability

4.1: : Understand independence and conditional probability and use them to interpret data.

AP.M.2HS.29: : Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities and use this characterization to determine if they are independent.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

AP.M.2HS.30: : Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

AP.M.2HS.32: : Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. (e.g., Compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.)

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

4.2: : Use the rules of probability to compute probabilities of compound events in a uniform probability model.

AP.M.2HS.33: : Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A and interpret the answer in terms of the model.

Independent and Dependent Events

AP.M.2HS.35: : Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.

Independent and Dependent Events

AP.M.2HS.36: : Use permutations and combinations to compute probabilities of compound events and solve problems.

Permutations and Combinations

Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview

4.3: : Use probability to evaluate outcomes of decisions.

AP.M.2HS.37: : Use probabilities to make fair decisions (e.g., drawing by lots or using a random number generator).

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview

AP.M.2HS.38: : Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, and/or pulling a hockey goalie at the end of a game).

Lucky Duck (Expected Value)

Pick a duck, win a prize! Help Arnie the carnie design his game so that he makes money (or at least breaks even). How many ducks of each type should there be? What are the prizes worth? How much should he charge to play? Lucky Duck is a fun way to learn about probabilities and expected value. 5 Minute Preview

### SRT: : Similarity, Right Triangle Trigonometry, and Proof

5.1: : Understand similarity in terms of similarity transformations.

SRT.M.2HS.39: : Verify experimentally the properties of dilations given by a center and a scale factor.

SRT.M.2HS.39.a: : A dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

SRT.M.2HS.39.b: : The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

SRT.M.2HS.40: : Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

SRT.M.2HS.41: : Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Proving Triangles Congruent

Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

5.2: : Prove geometric theorems.

SRT.M.2HS.42: : Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints. Implementation may be extended to include concurrence of perpendicular bisectors and angle bisectors as preparation for M.2HS.C.3.

Constructing Parallel and Perpendicular Lines

Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview

Investigating Angle Theorems

Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview

Segment and Angle Bisectors

Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview

SRT.M.2HS.43: : Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

Concurrent Lines, Medians, and Altitudes

Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview

Congruence in Right Triangles

Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview

Isosceles and Equilateral Triangles

Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview

Proving Triangles Congruent

Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview

Triangle Angle Sum

Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview

Triangle Inequalities

Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview

SRT.M.2HS.44: : Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other and conversely, rectangles are parallelograms with congruent diagonals.

Parallelogram Conditions

Apply constraints to a dynamic quadrilateral. Then drag its vertices around. Determine which constraints guarantee that the quadrilateral is always a parallelogram. 5 Minute Preview

Special Parallelograms

Apply constraints to a parallelogram and experiment with the resulting figure. What type of shape can you be sure that you have under each condition? 5 Minute Preview

5.3: : Prove theorems involving similarity.

SRT.M.2HS.45: : Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally and conversely; the Pythagorean Theorem proved using triangle similarity.

Congruence in Right Triangles

Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview

Proving Triangles Congruent

Apply constraints to two triangles. Then drag the vertices of the triangles around and determine which constraints guarantee congruence. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Similarity in Right Triangles

Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview

SRT.M.2HS.46: : Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Chords and Arcs

Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview

Perimeters and Areas of Similar Figures

Manipulate two similar figures and vary the scale factor to see what changes are possible under similarity. Explore how the perimeters and areas of two similar figures compare. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

Similarity in Right Triangles

Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview

5.5: : Define trigonometric ratios and solve problems involving right triangles.

SRT.M.2HS.48: : Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Sine, Cosine, and Tangent Ratios

Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview

SRT.M.2HS.49: : Explain and use the relationship between the sine and cosine of complementary angles.

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview

SRT.M.2HS.50: : Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Distance Formula

Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Pythagorean Theorem with a Geoboard

Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview

Sine, Cosine, and Tangent Ratios

Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview

5.6: : Prove and apply trigonometric identities.

SRT.M.2HS.51: : Prove the Pythagorean identity sin²(theta) + cos²(theta) = 1 and use it to find sin(theta), cos (theta), or tan (theta), given sin (theta), cos (theta), or tan (theta), and the quadrant of the angle.

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview

### CWC: : Circles With and Without Coordinates

6.1: : Understand and apply theorems about circles.

CWC.M.2HS.53: : Identify and describe relationships among inscribed angles, radii and chords. Include the relationship between central, inscribed and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

Chords and Arcs

Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview

Inscribed Angles

Resize angles inscribed in a circle. Investigate the relationship between inscribed angles and the arcs they intercept. 5 Minute Preview

CWC.M.2HS.54: : Construct the inscribed and circumscribed circles of a triangle and prove properties of angles for a quadrilateral inscribed in a circle.

Concurrent Lines, Medians, and Altitudes

Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview

6.2: : Find arc lengths and areas of sectors of circles.

CWC.M.2HS.56: : Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

Radians

As factory belt operator, your job is to move boxes just the right distance on the belt, so they can be stamped for delivery. Your only controls are the radius and rotation of the belt’s wheel. How do you set these to get the distance right? See how this relates to arc length, and discover how radians help make this task easier. 5 Minute Preview

6.3: : Translate between the geometric description and the equation for a conic section.

CWC.M.2HS.57: : Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

Circles

Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview

CWC.M.2HS.58: : Derive the equation of a parabola given the focus and directrix.

Parabolas

Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview

6.4: : Use coordinates to prove simple geometric theorems algebraically.

CWC.M.2HS.59: : Use coordinates to prove simple geometric theorems algebraically. (e.g., Prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, square root of 3) lies on the circle centered at the origin and containing the point (0, 2).)

Distance Formula

Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview

6.5: : Explain volume formulas and use them to solve problems.

CWC.M.2HS.60: : Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle and informal limit arguments.

Circumference and Area of Circles

Resize a circle and compare its radius, circumference, and area. 5 Minute Preview

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

Pyramids and Cones

Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview

CWC.M.2HS.61: : Use volume formulas for cylinders, pyramids, cones and spheres to solve problems. Volumes of solid figures scale by k³ under a similarity transformation with scale factor k.

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

Pyramids and Cones

Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview

Correlation last revised: 1/9/2023

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available January 1 and July 1.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote