### PH.1: : The student will demonstrate an understanding of scientific and engineering practices by

PH.1.a: : asking questions and defining problems

PH.1.a.2: : determine which questions can be investigated within the scope of the school laboratory

Pendulum Clock

Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview

Sight vs. Sound Reactions

Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview

PH.1.a.3: : make hypotheses that specify what happens to a dependent variable when an independent variable is manipulated

Pendulum Clock

Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview

PH.1.a.4: : generate hypotheses based on research and scientific principles

Pendulum Clock

Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview

PH.1.b: : planning and carrying out investigations

PH.1.b.1: : individually and collaboratively plan and conduct observational and experimental investigations

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview

Diffusion

Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview

Effect of Environment on New Life Form

Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens. 5 Minute Preview

Pendulum Clock

Real-Time Histogram

Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview

Seed Germination

Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview

Sight vs. Sound Reactions

Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview

Temperature and Sex Determination - Metric

Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview

PH.1.b.3: : select and use appropriate tools and technology to collect, record, analyze, and evaluate data

Triple Beam Balance

Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview

PH.1.c: : interpreting, analyzing, and evaluating data

PH.1.c.2: : use data in building and revising models, supporting an explanation for phenomena, or testing solutions to problems

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview

PH.1.c.3: : analyze data using tools, technologies, and/or models (e.g., computational, mathematical, statistical) in order to make valid and reliable scientific claims or determine an optimal design solution

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview

PH.1.c.4: : analyze data graphically and use graphs to make predictions

Seasons Around the World

Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview

PH.1.c.6: : evaluate the effects of new data on a working explanation and/or model of a proposed process or system

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview

PH.1.c.7: : analyze data to optimize a design

Trebuchet

PH.1.d: : constructing and critiquing conclusions and explanations

PH.1.d.1: : make quantitative and/or qualitative claims based on data

Temperature and Sex Determination - Metric

Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview

PH.1.e: : developing and using models

PH.1.e.3: : develop and/or use models (including mathematical and computational) and simulations to visualize, explain, and predict phenomena and to interpret data sets

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview

PH.1.f: : obtaining, evaluating, and communicating information

PH.1.f.3: : communicate scientific and/or technical information about phenomena and/or a design process in multiple formats

Pendulum Clock

Trebuchet

### PH.2: : The student will investigate and understand, through mathematical and experimental processes, that there are relationships between position and time. Key topics include

PH.2.a: : displacement, velocity, and uniform acceleration;

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview

Feed the Monkey (Projectile Motion)

Fire a banana cannon at a monkey in a tree. The monkey drops from the tree at the moment the banana is fired from the cannon. Determine where to aim the cannon so the monkey catches the banana. The position of the cannon, launch angle and initial velocity of the banana can be varied. Students can observe the velocity vectors and the paths of the monkey and banana. 5 Minute Preview

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview

Golf Range

Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview

Period of a Pendulum

Practice measuring the period of a pendulum. Perform experiments to determine how mass, length, gravitational acceleration, and angle affect the period of a pendulum. 5 Minute Preview

Simple Harmonic Motion

Observe two different forms of simple harmonic motion: a pendulum and a spring supporting a mass. Use a stopwatch to measure the period of each device as you adjust the mass hanging from the spring, the spring constant, the mass of the pendulum, the length of the pendulum, and the gravitational acceleration. 5 Minute Preview

PH.2.b: : linear motion;

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview

PH.2.c: : uniform circular motion; and

Torque and Moment of Inertia

One of the simplest machines is a see-saw lever. Place up to eight objects on the lever at different locations and try to balance it. Calculate net torque and moment of inertia based on the positions of the objects and the mass of the bar. The mass of each object can be changed, and the fulcrum position can be shifted as well. 5 Minute Preview

Uniform Circular Motion

Measure the position, velocity, and acceleration (both components and magnitude) of an object undergoing circular motion. The radius and velocity of the object can be controlled, along with the mass of the object. The forces acting on the object also can be recorded. 5 Minute Preview

PH.2.d: : projectile motion.

Feed the Monkey (Projectile Motion)

Fire a banana cannon at a monkey in a tree. The monkey drops from the tree at the moment the banana is fired from the cannon. Determine where to aim the cannon so the monkey catches the banana. The position of the cannon, launch angle and initial velocity of the banana can be varied. Students can observe the velocity vectors and the paths of the monkey and banana. 5 Minute Preview

Golf Range

Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview

Gravity Pitch

Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview

### PH.3: : The student will investigate and understand, through mathematical and experimental processes, that there are relationships among force, mass, and acceleration. Key laws include

PH.3.a: : Newton’s Laws of Motion; and

Atwood Machine

Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview

PH.3.b: : Newton’s Law of Universal Gravitation.

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview

Pith Ball Lab

Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview

### PH.4: : The student will investigate and understand, through mathematical and experimental processes, that conservation laws govern all interactions. Key ideas include

PH.4.a: : momentum is conserved unless an impulse acts on the system; and

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview

Sled Wars

Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview

PH.4.b: : mechanical energy is conserved unless work is done on, by, or within the system.

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview

Sled Wars

Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview

Trebuchet

### PH.5: : The student will investigate and understand, through mathematical and experimental processes, that waves transmit energy and move in predictable patterns. Key ideas include

PH.5.a: : waves have specific characteristics;

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview

PH.5.b: : wave interactions are part of everyday experiences; and

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview

PH.5.c: : light and sound can be modeled as waves.

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview

Doppler Shift

Observe sound waves emitted from a moving vehicle. Measure the frequency of sound waves in front of and behind the vehicle as it moves, illustrating the Doppler effect. The frequency of sound waves, speed of the source, and the speed of sound can all be manipulated. Motion of the vehicle can be linear, oscillating, or circular. 5 Minute Preview

Doppler Shift Advanced

Derive an equation to calculate the frequency of an oncoming sound source and a receding sound source. Also, calculate the Doppler shift that results from a moving observer and a stationary sound source. The source velocity, sound velocity, observer velocity, and sound frequency can all be manipulated. 5 Minute Preview

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview

### PH.6: : The student will investigate and understand, through mathematical and experimental processes, that optical systems form a variety of images. Key ideas include

PH.6.a: : the laws of reflection and refraction describe light behavior; and

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview

Laser Reflection

Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used. 5 Minute Preview

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview

PH.6.b: : ray diagrams model light as it travels through different media.

Ray Tracing (Lenses)

Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview

Ray Tracing (Mirrors)

Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image. 5 Minute Preview

### PH.7: : The student will investigate and understand, through mathematical and experimental processes, that fields provide a unifying description of force at a distance. Key ideas include

PH.7.a: : gravitational, electric, and magnetic forces can be described using the field concept; and

Charge Launcher

Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview

Coulomb Force (Static)

Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview

Magnetism

Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview

Pith Ball Lab

Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview

PH.7.b: : field strength diminishes with increased distance from the source.

Coulomb Force (Static)

Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview

### PH.8: : The student will investigate and understand, through mathematical and experimental processes, that electrical circuits are a system used to transfer energy. Key ideas include

PH.8.a: : circuit components have different functions within the system;

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview

PH.8.b: : Ohm’s law relates voltage, current, and resistance;

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview

PH.8.c: : different types of circuits have different characteristics and are used for different purposes;

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview

PH.8.d: : electrical power is related to the elements in a circuit; and

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview

PH.8.e: : electrical circuits have everyday applications.

Advanced Circuits

Circuit Builder

### PH.9: : The student will investigate and understand that extremely large and extremely small quantities are not necessarily described by the same laws as those studied in Newtonian physics. Topics, such as these listed, may be included.

PH.9.a: : wave/particle duality;

Photoelectric Effect

Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and amount of light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies. 5 Minute Preview

PH.9.d: : nuclear physics;

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview

Bohr Model: Introduction

Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview

Half-life

Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview

Isotopes

Explore what isotopes are by adding protons and neutrons to the nucleus of an atom. Plot both stable and radioactive isotopes on a graph of neutrons vs. protons, and explore how the neutron:proton ratio of stable isotopes changes from lighter to heavier elements. 5 Minute Preview

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview

Nuclear Reactions

Explore examples of nuclear fusion and fission reactions. Follow the steps of the proton-proton chain, CNO cycle, and fission of uranium-235. Write balanced nuclear equations for each step, and compare the energy produced in each process. 5 Minute Preview

PH.9.h: : the standard model; and

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available Jul 01, 2023.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote