- Home
- Find Gizmos
- Browse by Standard (USA)
- California Standards
- Science: Earth Science
Virginia - Science: Earth Science
Standards of Learning | Adopted: 2010
ES.1: : The student will plan and conduct investigations in which
ES.1.a: : volume, area, mass, elapsed time, direction, temperature, pressure, distance, density, and changes in elevation/depth are calculated utilizing the most appropriate tools;
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
ES.1.c: : scales, diagrams, charts, graphs, tables, imagery, models, and profiles are constructed and interpreted;
Distance-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
ES.1.d: : maps and globes are read and interpreted, including location by latitude and longitude;
Building Topographic Maps
Build a topographic map by flooding a three dimensional landscape with water and drawing contour lines. Draw a profile of a landscape based on the topographic map. 5 Minute Preview
Ocean Mapping
Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow. 5 Minute Preview
Reading Topographic Maps
Understand how topographic maps work by creating a three-dimensional landscape and observing the corresponding contour lines. See how mountains, depressions, valleys and cliffs are represented on topographic maps. Fill in the landscape with water to demonstrate that contours are lines of constant elevation. 5 Minute Preview
Weather Maps - Metric
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview
ES.1.e: : variables are manipulated with repeated trials; and
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
ES.2: : The student will demonstrate an understanding of the nature of science and scientific reasoning and logic.
ES.2.b: : evidence is required to evaluate hypotheses and explanations;
Temperature and Sex Determination - Metric
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex. 5 Minute Preview
ES.3: : The student will investigate and understand the characteristics of Earth and the solar system.
ES.3.b: : sun-Earth-moon relationships; (seasons, tides, and eclipses);
3D Eclipse
Observe the motions of the Earth, Moon and Sun in three dimensions to investigate the causes and frequency of eclipses. Observe Earth's shadow crossing the Moon during a lunar eclipse, and the path of the Moon's shadow across Earth's surface during a solar eclipse. The angle of the Moon's orbit can be adjusted, as well as the distance of the Moon from the Earth. 5 Minute Preview
Seasons Around the World
Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview
Seasons in 3D
Gain an understanding of the causes of seasons by observing Earth as it orbits the Sun in three dimensions. Observe the path of the Sun across the sky on any date and from any location. Create graphs of solar intensity and day length, and use collected data to describe and explain seasonal changes. 5 Minute Preview
Seasons: Why do we have them?
Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview
Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
ES.5: : The student will investigate and understand the rock cycle as it relates to the origin and transformation of rock types and how to identify common rock types based on mineral composition and textures.
ES.5.a: : igneous rocks;
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview
ES.5.b: : sedimentary rocks; and
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview
ES.5.c: : metamorphic rocks.
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview
ES.6: : The student will investigate and understand the differences between renewable and nonrenewable resources.
ES.6.a: : fossil fuels, minerals, rocks, water, and vegetation;
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
ES.7: : The student will investigate and understand geologic processes including plate tectonics.
ES.7.a: : geologic processes and their resulting features; and
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview
River Erosion
Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview
Weathering
Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview
ES.7.b: : tectonic processes.
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview
ES.8: : The student will investigate and understand how freshwater resources are influenced by geologic processes and the activities of humans.
ES.8.e: : dependence on freshwater resources and the effects of human usage on water quality; and
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
ES.9: : The student will investigate and understand that many aspects of the history and evolution of Earth and life can be inferred by studying rocks and fossils.
ES.9.b: : superposition, cross-cutting relationships, index fossils, and radioactive decay are methods of dating bodies of rock;
Half-life
Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview
ES.10: : The student will investigate and understand that oceans are complex, interactive physical, chemical, and biological systems and are subject to long- and short-term variations.
ES.10.b: : importance of environmental and geologic implications;
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
ES.10.d: : features of the sea floor as reflections of tectonic processes; and
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview
ES.11: : The student will investigate and understand the origin and evolution of the atmosphere and the interrelationship of geologic processes, biologic processes, and human activities on its composition and dynamics.
ES.11.d: : potential changes to the atmosphere and climate due to human, biologic, and geologic activity.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
ES.12: : The student will investigate and understand that energy transfer between the sun and Earth and its atmosphere drives weather and climate on Earth.
ES.12.b: : prediction of weather patterns;
Hurricane Motion - Metric
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview
Weather Maps - Metric
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview
ES.12.c: : severe weather occurrences, such as tornadoes, hurricanes, and major storms; and
Hurricane Motion - Metric
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview
ES.12.d: : weather phenomena and the factors that affect climate including radiation, conduction, and convection.
Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
ES.13: : The student will investigate and understand scientific concepts related to the origin and evolution of the universe.
ES.13.a: : cosmology including the Big Bang theory; and
Big Bang Theory - Hubble's Law
Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote