Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Core Curriculum
  • Pearson/Prentice Hall Textbooks
  • Biology (2019)

Biology (2019)

1: The Science of Biology

Screenshot of Growing Plants

Growing Plants

Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview


Lesson Info
Launch Gizmo

2: The Chemistry of Life

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Dehydration Synthesis

Dehydration Synthesis

Build a glucose molecule, atom-by-atom, to learn about chemical bonds and the structure of glucose. Explore the processes of dehydration synthesis and hydrolysis in carbohydrate molecules. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

3: The Biosphere

Screenshot of Comparing Climates (Metric)

Comparing Climates (Metric)

Compare average temperatures, precipitation, humidity, and wind speed for a variety of locations across the globe. Explore the influence of latitude, proximity to oceans, elevation, and other factors on climate. Observe how animals and plants are adapted to climate and their environment. This lesson uses metric units. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Greenhouse Effect - Metric

Greenhouse Effect - Metric

Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The amount of greenhouse gases present in the atmosphere can be adjusted through time, and the long-term effects can be investigated. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

4: Ecosystems

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo

5: Populations

Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo

6: Communities and Ecosystem Dynamics

Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo

7: Humans and Global Change

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Greenhouse Effect - Metric

Greenhouse Effect - Metric

Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The amount of greenhouse gases present in the atmosphere can be adjusted through time, and the long-term effects can be investigated. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

8: Cell Structure and Function

Screenshot of Cell Structure

Cell Structure

Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Cell Types

Cell Types

Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Osmosis

Osmosis

Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Paramecium Homeostasis

Paramecium Homeostasis

Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview


Lesson Info
Launch Gizmo

9: Photosynthesis

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Photosynthesis Lab

Photosynthesis Lab

Study photosynthesis in a variety of conditions. Oxygen production is used to measure the rate of photosynthesis. Light intensity, carbon dioxide levels, temperature, and wavelength of light can all be varied. Determine which conditions are ideal for photosynthesis, and understand how limiting factors affect oxygen production. 5 Minute Preview


Lesson Info
Launch Gizmo

10: Cellular Respiration

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo

11: Cell Growth and Division

Screenshot of Cell Division

Cell Division

Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Embryo Development

Embryo Development

Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview


Lesson Info
Launch Gizmo

12: Introduction to Genetics

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Flower Pollination

Flower Pollination

Observe the steps of pollination and fertilization in flowering plants. Help with many parts of the process by dragging pollen grains to the stigma, dragging sperm to the ovules, and removing petals as the fruit begins to grow. Quiz yourself when you are done by dragging vocabulary words to the correct plant structure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Meiosis

Meiosis

Explore how sex cells are produced by the process of meiosis. Compare meiosis in male and female germ cells, and use crossovers to increase the number of possible gamete genotypes. Using meiosis and crossovers, create "designer" fruit fly offspring with desired trait combinations. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

13: DNA

Screenshot of Building DNA

Building DNA

Construct a DNA molecule, examine its double-helix structure, and then go through the DNA replication process. Learn how each component fits into a DNA molecule, and see how a unique, self-replicating code can be created. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of DNA Analysis

DNA Analysis

Scan the DNA of frogs to produce DNA sequences. Use the DNA sequences to identify possible identical twins and to determine which sections of DNA code for skin color, eye color, and the presence or absence of spots. 5 Minute Preview


Lesson Info
Launch Gizmo

14: RNA and Protein Synthesis

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo

15: The Human Genome

Screenshot of Human Karyotyping

Human Karyotyping

Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview


Lesson Info
Launch Gizmo

16: Biotechnology

Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo

17: Darwin's Theory of Evolution

Screenshot of Cladograms

Cladograms

Based on the similarities and differences between different organisms, create branching diagrams called cladograms to show how they are related. Use both morphological data (physical traits) and molecular data to create the simplest and most likely cladograms. Five different sets of organisms are available. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Human Evolution - Skull Analysis

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Natural Selection

Natural Selection

You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo

18: Evolution of Populations

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microevolution

Microevolution

Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview


Lesson Info
Launch Gizmo

19: Biodiversity and Classification

Screenshot of Cladograms

Cladograms

Based on the similarities and differences between different organisms, create branching diagrams called cladograms to show how they are related. Use both morphological data (physical traits) and molecular data to create the simplest and most likely cladograms. Five different sets of organisms are available. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Dichotomous Keys

Dichotomous Keys

Use dichotomous keys to identify and classify five types of organisms: California albatrosses, Canadian Rockies buttercups, Texas venomous snakes, Virginia evergreens, and Florida cartilagenous fishes. After you have classified every organism, try making your own dichotomous key! 5 Minute Preview


Lesson Info
Launch Gizmo

20: History of Life

Screenshot of Building Pangaea

Building Pangaea

In 1915, Alfred Wegener proposed that all of Earth's continents were once joined in an ancient supercontinent he called Pangaea. Wegener's idea of moving continents led to the modern theory of plate tectonics. Create your own version of Pangaea by fitting Earth's landmasses together like puzzle pieces. Use evidence from fossils, rocks, and glaciers to refine your map. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Half-life

Half-life

Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview


Lesson Info
Launch Gizmo

21: Viruses, Prokaryotes, Protists and Fungi

Screenshot of Disease Spread

Disease Spread

Observe the spread of disease through a group of people. The methods of transmission can be chosen and include person-to-person, airborne, and foodborne as well as any combination thereof. The probability of each form of transmission and number of people in the group can also be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Virus Lytic Cycle

Virus Lytic Cycle

Release a lytic virus in a group of cells and observe how cells are infected over time and eventually destroyed. Data related to the number of healthy cells, infected cells, and viruses can be recorded over time to determine the time required for the virus to mature within a cell. 5 Minute Preview


Lesson Info
Launch Gizmo

22: Plants

Screenshot of Pollination: Flower to Fruit

Pollination: Flower to Fruit

Label a diagram that illustrates the anatomy of a flower, and understand the function of each structure. Compare the processes of self pollination and cross pollination, and explore how fertilization takes place in a flowering plant. 5 Minute Preview


Lesson Info
Launch Gizmo

24: Animal Evolution, Diversity, and Behavior

Screenshot of Embryo Development

Embryo Development

Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Human Evolution - Skull Analysis

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

25: Animal Systems I

Screenshot of Identifying Nutrients

Identifying Nutrients

Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview


Lesson Info
Launch Gizmo

26: Animal Systems II

Screenshot of Human Homeostasis

Human Homeostasis

Adjust the levels of clothing, perspiration, and exercise to maintain a stable internal temperature as the external temperature changes. Water and blood sugar levels need to be replenished regularly, and fatigue occurs with heavy exercise. Severe hypothermia, heat stroke, or dehydration can result if internal stability is not maintained. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Senses

Senses

Everything we know about the world comes through our senses: sight, hearing, touch, taste, and smell. In the Senses Gizmo, explore how stimuli are detected by specialized cells, transmitted through nerves, and processed in the brain. 5 Minute Preview


Lesson Info
Launch Gizmo

27: The Human Body

Screenshot of Circulatory System

Circulatory System

Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Digestive System

Digestive System

Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Human Homeostasis

Human Homeostasis

Adjust the levels of clothing, perspiration, and exercise to maintain a stable internal temperature as the external temperature changes. Water and blood sugar levels need to be replenished regularly, and fatigue occurs with heavy exercise. Severe hypothermia, heat stroke, or dehydration can result if internal stability is not maintained. 5 Minute Preview


Lesson Info
Launch Gizmo

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap