- Home
- Find Gizmos
- Browse by Standard (USA)
- Maine Standards
- Science: 6th Grade
Florida - Science: 6th Grade
Florida’s State Academic Standards for Science | Adopted: 2008
SC.6.E: : Earth and Space Science
SC.6.E.6: : Over geologic time, internal and external sources of energy have continuously altered the features of Earth by means of both constructive and destructive forces. All life, including human civilization, is dependent on Earth's internal and external energy and material resources.
SC.6.E.6.1: : Describe and give examples of ways in which Earth's surface is built up and torn down by physical and chemical weathering, erosion, and deposition.
Erosion Rates
Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview
River Erosion
Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview
Weathering
Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview
SC.6.E.7: : The scientific theory of the evolution of Earth states that changes in our planet are driven by the flow of energy and the cycling of matter through dynamic interactions among the atmosphere, hydrosphere, cryosphere, geosphere, and biosphere, and the resources used to sustain human civilization on Earth.
SC.6.E.7.1: : Differentiate among radiation, conduction, and convection, the three mechanisms by which heat is transferred through Earth's system.
Conduction and Convection
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview
Convection Cells
Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
Radiation
Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview
SC.6.E.7.2: : Investigate and apply how the cycling of water between the atmosphere and hydrosphere has an effect on weather patterns and climate.
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
SC.6.E.7.3: : Describe how global patterns such as the jet stream and ocean currents influence local weather in measurable terms such as temperature, air pressure, wind direction and speed, and humidity and precipitation.
Coastal Winds and Clouds
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Weather Maps
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview
Coriolis Effect
The Coriolis effect causes winds to be deflected as they move across Earth's surface, resulting in circular patterns of winds. This effect is caused by two factors, Earth's rotation and frame of reference. In the Coriolis Effect Gizmo, students will build their understanding of this phenomenon using the analogy of two kids playing catch: first on a train, then on a merry-go-round, and finally on Earth's surface. 5 Minute Preview
Weather Maps - Metric
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview
SC.6.E.7.4: : Differentiate and show interactions among the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere.
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
SC.6.E.7.6: : Differentiate between weather and climate.
Comparing Climates (Customary)
Compare average temperatures, precipitation, humidity, and wind speed for a variety of locations across the globe. Explore the influence of latitude, proximity to oceans, elevation, and other factors on climate. Observe how animals and plants are adapted to climate and their environment. This lesson uses U.S. customary units. 5 Minute Preview
Comparing Climates (Metric)
Compare average temperatures, precipitation, humidity, and wind speed for a variety of locations across the globe. Explore the influence of latitude, proximity to oceans, elevation, and other factors on climate. Observe how animals and plants are adapted to climate and their environment. This lesson uses metric units. 5 Minute Preview
Observing Weather (Customary)
How do scientists measure and describe the weather? In this introductory lesson, students will practice using a thermometer, anemometer, rain gauge, and hygrometer to record weather conditions in a variety of locations and dates. This lesson uses U.S. customary units. 5 Minute Preview
Observing Weather (Metric)
How do scientists measure and describe the weather? In this introductory lesson, students will practice using a thermometer, anemometer, rain gauge, and hygrometer to record weather conditions in a variety of locations and dates. This lesson uses metric units. 5 Minute Preview
SC.6.E.7.8: : Describe ways human beings protect themselves from hazardous weather and sun exposure.
Flood and Storm-Proof Homes
Build a home to survive a flood or a hurricane and protect the people inside. Choose materials and a design for the foundation, frame, walls, and roof of the house. Add "extras" such as sand bags, storm shutters, and roof clips. Test your house in a flood or storm and see how well your design worked. 5 Minute Preview
SC.6.L: : Life Science
SC.6.L.14: : Organization and Development of Living Organisms
SC.6.L.14.2: : Investigate and explain the components of the scientific theory of cells (cell theory): all organisms are composed of cells (single-celled or multi-cellular), all cells come from pre-existing cells, and cells are the basic unit of life.
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
SC.6.L.14.3: : Recognize and explore how cells of all organisms undergo similar processes to maintain homeostasis, including extracting energy from food, getting rid of waste, and reproducing.
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
SC.6.L.14.4: : Compare and contrast the structure and function of major organelles of plant and animal cells, including cell wall, cell membrane, nucleus, cytoplasm, chloroplasts, mitochondria, and vacuoles.
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
SC.6.L.14.5: : Identify and investigate the general functions of the major systems of the human body (digestive, respiratory, circulatory, reproductive, excretory, immune, nervous, and musculoskeletal) and describe ways these systems interact with each other to maintain homeostasis.
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
Muscles and Bones
See how muscles, bones, and connective tissue work together to allow movement. Observe how muscle contraction arises from the interactions of thin and thick filaments in muscle cells. Using what you have learned, construct an arm that can lift a weight or throw a ball. Connective tissue, muscle composition, bone length, and tendon insertion point can all be manipulated to create an arm to lift the heaviest weight or throw a ball the fastest. 5 Minute Preview
SC.6.L.14.6: : Compare and contrast types of infectious agents that may infect the human body, including viruses, bacteria, fungi, and parasites.
Disease Spread
Observe the spread of disease through a group of people. The methods of transmission can be chosen and include person-to-person, airborne, and foodborne as well as any combination thereof. The probability of each form of transmission and number of people in the group can also be adjusted. 5 Minute Preview
SC.6.L.15: : Diversity and Evolution of Living Organisms
1.1.1.1.1.1:
SC.6.L.15.1: : Analyze and describe how and why organisms are classified according to shared characteristics with emphasis on the Linnaean system combined with the concept of Domains.
Dichotomous Keys
Use dichotomous keys to identify and classify five types of organisms: California albatrosses, Canadian Rockies buttercups, Texas venomous snakes, Virginia evergreens, and Florida cartilagenous fishes. After you have classified every organism, try making your own dichotomous key! 5 Minute Preview
SC.6.N: : Nature of Science
SC.6.N.1: : The Practice of Science
SC.6.N.1.1: : Define a problem from the sixth grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Convection Cells
Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Energy of a Pendulum
Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview
Flood and Storm-Proof Homes
Build a home to survive a flood or a hurricane and protect the people inside. Choose materials and a design for the foundation, frame, walls, and roof of the house. Add "extras" such as sand bags, storm shutters, and roof clips. Test your house in a flood or storm and see how well your design worked. 5 Minute Preview
Human Homeostasis
Adjust the levels of clothing, perspiration, and exercise to maintain a stable internal temperature as the external temperature changes. Water and blood sugar levels need to be replenished regularly, and fatigue occurs with heavy exercise. Severe hypothermia, heat stroke, or dehydration can result if internal stability is not maintained. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
SC.6.P: : Physical Science
SC.6.P.11: : Energy Transfer and Transformations
SC.6.P.11.1: : Explore the Law of Conservation of Energy by differentiating between potential and kinetic energy. Identify situations where kinetic energy is transformed into potential energy and vice versa.
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Energy of a Pendulum
Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
SC.6.P.12: : Motion of Objects
SC.6.P.12.1: : Measure and graph distance versus time for an object moving at a constant speed. Interpret this relationship.
Distance-Time Graphs
Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Distance-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
SC.6.P.13: : Forces and Changes in Motion
SC.6.P.13.1: : Investigate and describe types of forces including contact forces and forces acting at a distance, such as electrical, magnetic, and gravitational.
Charge Launcher
Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
Magnetism
Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview
SC.6.P.13.2: : Explore the Law of Gravity by recognizing that every object exerts gravitational force on every other object and that the force depends on how much mass the objects have and how far apart they are.
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
Weight and Mass
Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon. 5 Minute Preview
SC.6.P.13.3: : Investigate and describe that an unbalanced force acting on an object changes its speed, or direction of motion, or both.
Force and Fan Carts
Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview
Correlation last revised: 7/30/2024
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote