- Home
- Find Gizmos
- Browse by Standard (USA)
- West Virginia Standards
- Mathematics: 8th Grade
Alabama - Mathematics: 8th Grade
Course of Study | Adopted: 2016
8.NS: : The Number System
1.1: : Know that there are numbers that are not rational, and approximate them by rational numbers.
8.NS.1: : Students will: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
8.NS.2: : Students will: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., pi²).
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Square Roots
Explore the meaning of square roots using an area model. Use the side length of a square to find the square root of a decimal number or a whole number. 5 Minute Preview
8.EE: : Expressions and Equations
2.1: : Work with radicals and integer exponents.
8.EE.3: : Students will: Know and apply the properties of integer exponents to generate equivalent numerical expressions.
Dividing Exponential Expressions
Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Exponents and Power Rules
Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview
Multiplying Exponential Expressions
Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
8.EE.4: : Students will: Use square root and cube root symbols to represent solutions to equations of the form x² = p and x³ = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that the square root of 2 is irrational.
Operations with Radical Expressions
Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Simplifying Radical Expressions
Simplify a radical expression. Use step-by-step feedback to diagnose any incorrect steps. 5 Minute Preview
Square Roots
Explore the meaning of square roots using an area model. Use the side length of a square to find the square root of a decimal number or a whole number. 5 Minute Preview
8.EE.5: : Students will: Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.
Number Systems
Explore number systems and convert numbers from one base to another using counter beads in place-value columns. 5 Minute Preview
Unit Conversions
Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems. 5 Minute Preview
Unit Conversions 2 - Scientific Notation and Significant Digits
Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview
8.EE.6: : Students will: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.
Number Systems
Explore number systems and convert numbers from one base to another using counter beads in place-value columns. 5 Minute Preview
Unit Conversions
Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems. 5 Minute Preview
Unit Conversions 2 - Scientific Notation and Significant Digits
Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview
2.2: : Understand the connections among proportional relationships, lines, and linear equations.
8.EE.7: : Students will: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.
Beam to Moon (Ratios and Proportions)
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Direct and Inverse Variation
Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview
Distance-Time Graphs
Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Distance-Time and Velocity-Time Graphs
Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
8.EE.8: : Students will: Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.
Linear Inequalities in Two Variables
Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
2.3: : Analyze and solve linear equations and pairs of simultaneous linear equations.
8.EE.9: : Students will: Solve linear equations in one variable.
8.EE.9.a: : Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
8.EE.9.b: : Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions, using the distributive property and collecting like terms.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations I
Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
8.EE.10: : Students will: Analyze and solve pairs of simultaneous linear equations.
8.EE.10.a: : Understand that solutions to a system of two linear equations in two variables correspond to points of intersections of their graphs because points of intersection satisfy both equations simultaneously.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
8.EE.10.b: : Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
8.EE.10.c: : Solve real-world and mathematical problems leading to two linear equations in two variables.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Slope-Intercept Form)
Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
8.F: : Functions
3.1: : Define, evaluate, and compare functions.
8.F.11: : Students will: Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
8.F.12: : Students will: Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
8.F.13: : Students will: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Point-Slope Form of a Line
Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Standard Form of a Line
Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
3.2: : Use functions to model relationships between quantities.
8.F.14: : Students will: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models and in terms of its graph or a table of values.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Distance-Time Graphs
Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Distance-Time and Velocity-Time Graphs
Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 2 (Functions, Tables, and Graphs)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
8.F.15: : Students will: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Distance-Time Graphs
Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Distance-Time and Velocity-Time Graphs
Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
Function Machines 3 (Functions and Problem Solving)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
Graphs of Polynomial Functions
Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
8.G: : Geometry
4.1: : Understand congruence and similarity using physical models, transparencies, or geometry software.
8.G.16: : Students will: Verify experimentally the properties of rotations, reflections, and translations:
8.G.16.a: : Lines are taken to lines, and line segments are taken to line segments of the same length.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
8.G.16.b: : Angles are taken to angles of the same measure.
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
8.G.16.c: : Parallel lines are taken to parallel lines.
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
8.G.17: : Students will: Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Reflections
Reshape and resize a figure and examine how its reflection changes in response. Move the line of reflection and explore how the reflection is translated. 5 Minute Preview
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
8.G.18: : Students will: Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Rock Art (Transformations)
Create your own rock art with ancient symbols. Each symbol can be translated, rotated, and reflected. After exploring each type of transformation, see if you can use them to match ancient rock paintings. 5 Minute Preview
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
8.G.19: : Students will: Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Dilations
Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
8.G.20: : Students will: Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
Investigating Angle Theorems
Explore the properties of complementary, supplementary, vertical, and adjacent angles using a dynamic figure. 5 Minute Preview
Isosceles and Equilateral Triangles
Investigate the graph of a triangle under constraints. Determine which constraints guarantee isosceles or equilateral triangles. 5 Minute Preview
Polygon Angle Sum
Derive the sum of the angles of a polygon by dividing the polygon into triangles and summing their angles. Vary the number of sides and determine how the sum of the angles changes. Dilate the polygon to see that the sum is unchanged. 5 Minute Preview
Similar Figures
Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview
Similarity in Right Triangles
Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview
Triangle Angle Sum
Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview
4.2: : Understand and apply the Pythagorean Theorem.
8.G.21: : Students will: Explain a proof of the Pythagorean Theorem and its converse.
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
8.G.22: : Students will: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Surface and Lateral Areas of Pyramids and Cones
Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
8.G.23: : Students will: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
4.3: : Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
8.G.24: : Students will: Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
Pyramids and Cones
Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview
8.SP: : Statistics and Probability
5.1: : Investigate patterns of association in bivariate data.
8.SP.25: : Students will: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
8.SP.26: : Students will: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
8.SP.27: : Students will: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Least-Squares Best Fit Lines
Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
8.SP.28: : Students will: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.
Histograms
Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote