- Home
- Find Gizmos
- Browse by Standard (USA)
- Alabama Standards
- Science: Middle School Physical Sciences
Wisconsin - Science: Middle School Physical Sciences
Academic Standards | Adopted: 2017
SCI.PS: : Physical Science
SCI.PS1: : Students use science and engineering practices, crosscutting concepts, and an understanding of matter and its interactions to make sense of phenomena and solve problems.
MS-PS1-1: : Develop models to describe the atomic composition of simple molecules and extended structures.
Dehydration Synthesis
Build a glucose molecule, atom-by-atom, to learn about chemical bonds and the structure of glucose. Explore the processes of dehydration synthesis and hydrolysis in carbohydrate molecules. 5 Minute Preview
MS-PS1-2: : Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
MS-PS1-4: : Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
Melting Points
Every substance has unique transition points, or temperatures at which one phase (solid, liquid, or gas) transitions to another. Use a realistic melting point apparatus to measure the melting points, boiling points, and/or sublimation points of different substances and observe what these phase changes look like at the microscopic level. Based on the transition points, make inferences about the relative strengths of the forces holding these substances together. 5 Minute Preview
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview
Phases of Water
Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview
Temperature and Particle Motion
Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared. 5 Minute Preview
MS-PS1-5: : Develop and use a model to describe how the total number of atoms does not change in a chemical reaction, and thus, mass is conserved.
Balancing Chemical Equations
Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview
MS-PS1-6: : Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.
Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview
SCI.PS2: : Students use science and engineering practices, crosscutting concepts, and an understanding of forces, interactions, motion and stability to make sense of phenomena and solve problems.
SCI.PS2.A: : Forces and Motion
SCI.PS2.A.m.i: : Motion and changes in motion can be qualitatively described using concepts of speed, velocity, and acceleration (including speeding up, slowing down, and/or changing direction).
Distance-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Free Fall Tower
Recreate Galileo's famous experiment by dropping objects off the Tower of Pisa. You can drop ping pong balls, golf balls, soccer balls or watermelons. Objects can be dropped in air or no air, with or without a parachute. The speed of each object is shown on a speedometer and a graph. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
Measuring Motion
Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest? 5 Minute Preview
MS-PS2-1: : Apply Newton’s third law to design a solution to a problem involving the motion of two colliding objects.
Crumple Zones
Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview
MS-PS2-2: : Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Crumple Zones
Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview
Fan Cart Physics
Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview
Force and Fan Carts
Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
MS-PS2-3: : Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.
Charge Launcher
Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview
Magnetic Induction
Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview
Pith Ball Lab
Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview
MS-PS2-4: : Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Gravitational Force
Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
Weight and Mass
Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon. 5 Minute Preview
MS-PS2-5: : Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.
Charge Launcher
Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview
Coulomb Force (Static)
Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview
Electromagnetic Induction
Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview
Magnetic Induction
Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview
Magnetism
Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview
Pith Ball Lab
Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview
SCI.PS3: : Students use science and engineering practices, crosscutting concepts, and an understanding of energy to make sense of phenomena and solve problems.
SCI.PS3.D: : Energy in Chemical Processes and Everyday Life
SCI.PS3.D.m: : Sunlight is captured by plants and used in a chemical reaction to produce sugar molecules for storing this energy. This stored energy can be released by respiration or combustion, which can be reversed by burning those molecules to release energy.
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Energy Conversions
Where does energy come from? How does energy get from one place to another? Find out how electrical current is generated and how living things get energy to move and grow. Trace the path of energy and see how energy is converted from one form to another. 5 Minute Preview
Photosynthesis Lab
Study photosynthesis in a variety of conditions. Oxygen production is used to measure the rate of photosynthesis. Light intensity, carbon dioxide levels, temperature, and wavelength of light can all be varied. Determine which conditions are ideal for photosynthesis, and understand how limiting factors affect oxygen production. 5 Minute Preview
MS-PS3-1: : Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object (emphasis on qualitative descriptions of relationships).
Air Track
Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview
Energy of a Pendulum
Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
Trebuchet
Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview
MS-PS3-2: : Develop a model to describe that when the distance between two objects changes, different amounts of potential energy are stored in the system (e.g., gravitational, magnetic or electrostatic potential energy).
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Energy of a Pendulum
Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
Potential Energy on Shelves
Compare the potential energy of several objects when you place them on shelves of different heights. Learn that two objects at different heights can have the same potential energy, while two objects at the same height can have different potential energies. 5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
Trebuchet
Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview
MS-PS3-3: : Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview
MS-PS3-4: : Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview
MS-PS3-5: : Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Air Track
Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
SCI.PS4: : Students use science and engineering practices, crosscutting concepts, and an understanding of waves and their applications in technologies for information transfer to make sense of phenomena and solve problems.
MS-PS4-1: : Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
Waves
Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview
MS-PS4-2: : Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
Basic Prism
Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview
Color Absorption
Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview
Earthquakes 1 - Recording Station
Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
Laser Reflection
Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used. 5 Minute Preview
Longitudinal Waves
Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview
Radiation
Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview
Refraction
Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview
Ripple Tank
Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview
Waves
Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote