- Home
- Find Gizmos
- Browse by Core Curriculum
- Glencoe/McGraw-Hill Textbooks
- Physical Science (2008)
Physical Science (2008)
1: The Nature of Science
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
Weight and Mass
Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon. 5 Minute Preview
2: Motion
2D Collisions
Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview
Distance-Time and Velocity-Time Graphs
Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
Force and Fan Carts
Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview
Free Fall Tower
Recreate Galileo's famous experiment by dropping objects off the Tower of Pisa. You can drop ping pong balls, golf balls, soccer balls or watermelons. Objects can be dropped in air or no air, with or without a parachute. The speed of each object is shown on a speedometer and a graph. 5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
3: Forces
Air Track
Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview
Beam to Moon (Ratios and Proportions)
Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview
Fan Cart Physics
Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
Golf Range
Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview
Gravitational Force
Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
4: Energy
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Energy Conversions
Where does energy come from? How does energy get from one place to another? Find out how electrical current is generated and how living things get energy to move and grow. Trace the path of energy and see how energy is converted from one form to another. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
Household Energy Usage
Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact. 5 Minute Preview
Potential Energy on Shelves
Compare the potential energy of several objects when you place them on shelves of different heights. Learn that two objects at different heights can have the same potential energy, while two objects at the same height can have different potential energies. 5 Minute Preview
5: Work and Machines
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
Levers
Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
Wheel and Axle
Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview
6: Thermal Energy
Boyle's Law and Charles's Law
Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles's Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source. Gay-Lussac's law relating pressure to temperature can also be explored by keeping the volume constant. 5 Minute Preview
Coastal Winds and Clouds
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Conduction and Convection
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
Radiation
Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview
7: Electricity
Charge Launcher
Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview
Circuits
Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview
Coulomb Force (Static)
Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview
Household Energy Usage
Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact. 5 Minute Preview
Pith Ball Lab
Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview
8: Magnetism and Its Uses
Magnetic Induction
Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview
Magnetism
Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview
9: Energy Sources
Energy Conversions
Where does energy come from? How does energy get from one place to another? Find out how electrical current is generated and how living things get energy to move and grow. Trace the path of energy and see how energy is converted from one form to another. 5 Minute Preview
10: Waves
Basic Prism
Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview
Doppler Shift
Observe sound waves emitted from a moving vehicle. Measure the frequency of sound waves in front of and behind the vehicle as it moves, illustrating the Doppler effect. The frequency of sound waves, speed of the source, and the speed of sound can all be manipulated. Motion of the vehicle can be linear, oscillating, or circular. 5 Minute Preview
Earthquakes 1 - Recording Station
Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview
Laser Reflection
Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used. 5 Minute Preview
Refraction
Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview
11: Sound
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Sound Beats and Sine Waves
Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview
12: Electromagnetic Waves
Herschel Experiment
Shine sunlight through a prism and use a thermometer to measure the temperature in different regions of the spectrum. The thermometer can be dragged through the visible spectrum and beyond. This recreates the experiment of William Herschel that led to the discovery of infrared radiation in 1800. 5 Minute Preview
13: Light
Additive Colors
Control the intensity of red, green, and blue spotlights. Additive colors can be observed where the spotlights overlap. The RGB value of any point can be measured. Just about any color can be created by mixing varying amounts of red, green, and blue light. 5 Minute Preview
Basic Prism
Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview
Color Absorption
Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview
Herschel Experiment
Shine sunlight through a prism and use a thermometer to measure the temperature in different regions of the spectrum. The thermometer can be dragged through the visible spectrum and beyond. This recreates the experiment of William Herschel that led to the discovery of infrared radiation in 1800. 5 Minute Preview
Radiation
Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview
Subtractive Colors
Move spots of yellow, cyan, and magenta pigment on a white surface. As the colors overlap, other colors can be seen due to color subtraction. The color of most things you see--such as cars, leaves, paintings, houses, and clothes--are due to color subtraction. The intensity of the cyan, magenta, and yellow can be adjusted, and the RGB value at any location can be measured. 5 Minute Preview
14: Mirrors and Lenses
Ray Tracing (Lenses)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview
Ray Tracing (Mirrors)
Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image. 5 Minute Preview
15: Classification of Matter
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
Mystery Powder Analysis
Perform multiple experiments using several common powders such as corn starch, baking powder, baking soda, salt, and gelatin. The results of the research on the known powders can then be used to analyze several unknowns using the scientific method. The unknowns can be a single powder or a combination of the known powders. 5 Minute Preview
Porosity
Pour water on a variety of sediment samples to find how much water can be absorbed by the sample (porosity) and how easily water flows through the sample (permeability). 5 Minute Preview
16: Solids, Liquids, and Gases
Boyle's Law and Charles's Law
Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles's Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source. Gay-Lussac's law relating pressure to temperature can also be explored by keeping the volume constant. 5 Minute Preview
Freezing Point of Salt Water
Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview
Phases of Water
Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview
17: Properties of Atoms and the Periodic Table
Element Builder
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview
18: Radioactivity and Nuclear Reactions
Half-life
Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview
Nuclear Decay
Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview
19: Elements and their Properties
Element Builder
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview
20: Chemical Bonds
Covalent Bonds
Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview
Ionic Bonds
Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview
21: Chemical Reactions
Balancing Chemical Equations
Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
22: Solutions
Colligative Properties
Determine how the physical properties of a solvent are dependent on the number of solute particles present. Measure the vapor pressure, boiling point, freezing point, and osmotic pressure of pure water and a variety of solutions. Compare the effects of four solutes (sucrose, sodium chloride, calcium chloride, and potassium chloride) on these physical properties. 5 Minute Preview
Solubility and Temperature
Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview
23: Acids, Bases, and Salts
pH Analysis
Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview
pH Analysis: Quad Color Indicator
Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview
24: Organic Compounds
Dehydration Synthesis
Build a glucose molecule, atom-by-atom, to learn about chemical bonds and the structure of glucose. Explore the processes of dehydration synthesis and hydrolysis in carbohydrate molecules. 5 Minute Preview
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote