- Home
- Find Gizmos
- Browse by Standard (USA)
- Wyoming Standards
- Science: 5th Grade
Utah - Science: 5th Grade
Utah Science with Engineering Education (SEEd) Standards | Adopted: 2019
5.1: : Characteristics and Interactions of Earth’s Systems
5.1.2: : Use mathematics and computational thinking to compare the quantity of saltwater and freshwater in various reservoirs to provide evidence for the distribution of water on Earth. Emphasize reservoirs such as oceans, lakes, rivers, glaciers, groundwater, and polar ice caps. Examples of using mathematics and computational thinking could include measuring, estimating, graphing, or finding percentages of quantities.
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
5.1.3: : Ask questions to plan and carry out investigations that provide evidence for the effects of weathering and the rate of erosion on the geosphere. Emphasize weathering and erosion by water, ice, wind, gravity, or vegetation. Examples could include observing the effects of cycles of freezing and thawing of water on rock or changing the slope in the downhill movement of water.
Erosion Rates
Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview
River Erosion
Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview
Weathering
Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview
5.1.4: : Develop a model to describe interactions between Earth’s systems including the geosphere, biosphere, hydrosphere, and/or atmosphere. Emphasize interactions between only two systems at a time. Examples could include the influence of a rainstorm in a desert, waves on a shoreline, or mountains on clouds.
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
Coastal Winds and Clouds
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Erosion Rates
Explore erosion in a simulated 3D environment. Observe how the landscape evolves over time as it is shaped by the forces of flowing water. Vary the initial landscape, rock type, precipitation amount, average temperature, and vegetation and measure how each variable affects the rate of erosion and resulting landscape features. 5 Minute Preview
Hurricane Motion
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview
Hurricane Motion - Metric
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols. 5 Minute Preview
River Erosion
Explore how river erosion affects landscapes in the short term and over long periods of time. Describe the features of mountain streams and meandering rivers, and use a floating barrel to estimate current speed. Witness the changes that occur as mountain streams erode downward and meandering rivers erode from side to side. 5 Minute Preview
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
Weathering
Weathering is the breakdown of rock at Earth's surface through physical or chemical means. Students will learn about the different types of mechanical and chemical weathering, then use a simulation to model the effects of weathering on different types of rocks in varying climate conditions. 5 Minute Preview
5.1.5: : Design solutions to reduce the effects of naturally occurring events that impact humans. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data from testing solutions, and propose modifications for optimizing a solution. Emphasize that humans cannot eliminate natural hazards, but they can take steps to reduce their impacts. Examples of events could include landslides, earthquakes, tsunamis, blizzards, or volcanic eruptions.
Earthquake-Proof Homes
Design a house to withstand an earthquake and protect the people living inside. Select a location in San Francisco, then choose the design and materials for a foundation, frame, walls, and roof. Decide which extras to add to your home design. Test each house in an earthquake and assess the damages. Try to arrive at a house design that results in the least damage. 5 Minute Preview
Flood and Storm-Proof Homes
Build a home to survive a flood or a hurricane and protect the people inside. Choose materials and a design for the foundation, frame, walls, and roof of the house. Add "extras" such as sand bags, storm shutters, and roof clips. Test your house in a flood or storm and see how well your design worked. 5 Minute Preview
5.2: : Properties and Changes of Matter
5.2.1: : Develop and use a model to describe that matter is made of particles on a scale that is too small to be seen. Emphasize making observations of changes supported by a particle model of matter. Examples could include adding air to expand a balloon, compressing air in a syringe, adding food coloring to water, or dissolving salt in water and evaporating the water. The use of the terms atoms and molecules will be taught in Grades 6 through 8.
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview
Phases of Water
Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview
Properties of Matter - Elementary School
The Secret Service has arrested suspects accused of counterfeiting coins from the year 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and evidence. Students learn about the properties of matter to recreate the methods used to make the coins as evidence for the trial. Video Preview
5.2.2: : Ask questions to plan and carry out investigations to identify substances based on patterns of their properties. Emphasize using properties to identify substances. Examples of properties could include color, hardness, conductivity, solubility, or a response to magnetic forces. Examples of substances could include powders, metals, minerals, or liquids.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Circuit Builder
Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview
Density
Measure the mass and volume of a variety of objects, then place them into a beaker of liquid to see if they float or sink. Learn to predict whether objects will float or sink in water based on their mass and volume. Compare how objects float or sink in a variety of liquids, including gasoline, oil, seawater, and corn syrup. 5 Minute Preview
Magnetism
Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview
Mineral Identification
Observe and measure the properties of a mineral sample, and then use a key to identify the mineral. Students can observe the color, luster, shape, density, hardness, streak, and reaction to acid for each mineral. There are 26 mineral samples to identify. 5 Minute Preview
Mystery Powder Analysis
Perform multiple experiments using several common powders such as corn starch, baking powder, baking soda, salt, and gelatin. The results of the research on the known powders can then be used to analyze several unknowns using the scientific method. The unknowns can be a single powder or a combination of the known powders. 5 Minute Preview
Properties of Matter - Elementary School
The Secret Service has arrested suspects accused of counterfeiting coins from the year 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and evidence. Students learn about the properties of matter to recreate the methods used to make the coins as evidence for the trial. Video Preview
5.2.3: : Plan and carry out investigations to determine the effect of combining two or more substances. Emphasize whether a new substance is or is not created by the formation of a new substance with different properties. Examples could include combining vinegar and baking soda or rusting an iron nail in water.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Properties of Matter - Elementary School
The Secret Service has arrested suspects accused of counterfeiting coins from the year 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and evidence. Students learn about the properties of matter to recreate the methods used to make the coins as evidence for the trial. Video Preview
5.2.4: : Use mathematics and computational thinking to provide evidence that regardless of the type of change that occurs when heating, cooling, or combining substances, the total weight of matter is conserved. Examples could include melting an ice cube, dissolving salt in water, and combining baking soda and vinegar in a closed bag.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
5.3: : Cycling of Matter in Ecosystems
5.3.1: : Construct an explanation that plants use air, water, and energy from sunlight to produce plant matter needed for growth. Emphasize photosynthesis at a conceptual level and that plant matter comes mostly from air and water, not from the soil. Photosynthesis at the cellular level will be taught in Grades 6 through 8.
Plants and Snails
Study the production and use of gases by plants and animals. Measure the oxygen and carbon dioxide levels in a test tube containing snails and elodea (a type of plant) in both light and dark conditions. Learn about the interdependence of plants and animals. 5 Minute Preview
Ecosystems - Elementary School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
5.3.2: : Obtain, evaluate, and communicate information that animals obtain energy and matter from the food they eat for body repair, growth, and motion and to maintain body warmth. Emphasize that the energy used by animals was once energy from the Sun. Cellular respiration will be taught in Grades 6 through 8.
Energy Conversions
Where does energy come from? How does energy get from one place to another? Find out how electrical current is generated and how living things get energy to move and grow. Trace the path of energy and see how energy is converted from one form to another. 5 Minute Preview
Ecosystems - Elementary School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
5.3.3: : Develop and use a model to describe the movement of matter among plants, animals, decomposers, and the environment. Emphasize that matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Examples could include simple food chains from ecosystems such as deserts or oceans or diagrams of decomposers returning matter to the environment. Complex interactions in a food web will be taught in Grades 6 through 8.
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
Ecosystems - Elementary School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
Correlation last revised: 6/21/2024
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote