# Tennessee - Mathematics: Integrated Mathematics 2

## Academic Standards | Adopted: 2016

### M2.N: : Number and Quantity

M2.N.RN: : The Real Number System

M2.N.RN.A: : Extend the properties of exponents to rational exponents.

M2.N.RN.A.2: : Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Simplifying Radical Expressions

Simplify a radical expression. Use step-by-step feedback to diagnose any incorrect steps. 5 Minute Preview

M2.N.CN: : The Complex Number System

M2.N.CN.A: : Perform arithmetic operations with complex numbers.

M2.N.CN.A.1: : Know there is a complex number i such that i² = –1, and every complex number has the form a + bi with a and b real.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

M2.N.CN.A.2: : Know and use the relation i² = –1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

M2.N.CN.B: : Use complex numbers in polynomial identities and equations.

M2.N.CN.B.3: : Solve quadratic equations with real coefficients that have complex solutions.

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

### M2.A: : Algebra

M2.A.SSE: : Seeing Structure in Expressions

M2.A.SSE.A: : Interpret the structure of expressions.

M2.A.SSE.A.1: : Interpret expressions that represent a quantity in terms of its context.

M2.A.SSE.A.1.a: : Interpret complicated expressions by viewing one or more of their parts as a single entity.

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

M2.A.SSE.A.2: : Use the structure of an expression to identify ways to rewrite it.

Dividing Exponential Expressions

Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Equivalent Algebraic Expressions I

Grumpy’s Restaurant is now hiring! As a new chef at this underwater bistro, you’ll learn the basics of manipulating algebraic expressions. Learn how to make equivalent expressions using the Commutative and Associative properties, how to handle pesky subtraction and division, and how to identify equivalent and non-equivalent expressions. 5 Minute Preview

Equivalent Algebraic Expressions II

Continue your meteoric rise in the undersea culinary world in this follow-up to Equivalent Algebraic Expressions I. Make equivalent expressions by using the distributive property forwards and backwards, sort expressions by equivalence, and personally assist Chef Grumpy himself with a project that will bring him (and maybe you) fame and fortune. 5 Minute Preview

Exponents and Power Rules

Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview

Factoring Special Products

Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Multiplying Exponential Expressions

Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Simplifying Algebraic Expressions I

Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview

Simplifying Algebraic Expressions II

Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview

M2.A.SSE.B: : Write expressions in equivalent forms to solve problems.

M2.A.SSE.B.3: : Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

M2.A.SSE.B.3.a: : Factor a quadratic expression to reveal the zeros of the function it defines.

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

M2.A.SSE.B.3.b: : Complete the square in a quadratic expression in the form Ax² + Bx + C to reveal the maximum or minimum value of the function it defines.

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

M2.A.APR: : Arithmetic with Polynomials and Rational Expressions

M2.A.APR.A: : Perform arithmetic operations on polynomials.

M2.A.APR.A.1: : Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview

Addition of Polynomials

Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Factoring Special Products

Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

M2.A.CED: : Creating Equations

M2.A.CED.A: : Create equations that describe numbers or relationships.

M2.A.CED.A.1: : Create equations and inequalities in one variable and use them to solve problems.

Exploring Linear Inequalities in One Variable

Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Solving Linear Inequalities in One Variable

Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

M2.A.CED.A.2: : Create equations in two or more variables to represent relationships between quantities; graph equations with two variables on coordinate axes with labels and scales.

Absolute Value Equations and Inequalities

Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

M2.A.CED.A.3: : Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Roots of a Quadratic

M2.A.REI: : Reasoning with Equations and Inequalities

M2.A.REI.A: : Understand solving equations as a process of reasoning and explain the reasoning.

M2.A.REI.A.1: : Explain each step in solving an equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

Solving Algebraic Equations II

Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

M2.A.REI.B: : Solve equations and inequalities in one variable.

M2.A.REI.B.2: : Solve quadratic equations and inequalities in one variable.

M2.A.REI.B.2.a: : Use the method of completing the square to rewrite any quadratic equation in x into an equation of the form (x – p)² = q that has the same solutions. Derive the quadratic formula from this form.

Roots of a Quadratic

M2.A.REI.B.2.b: : Solve quadratic equations by inspection (e.g., for x² = 49), taking square roots, completing the square, knowing and applying the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Roots of a Quadratic

M2.A.REI.C: : Solve systems of equations.

M2.A.REI.C.3: : Write and solve a system of linear equations in context.

Solving Linear Systems (Matrices and Special Solutions)

Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (*x*, *y*) point to be a solution of an equation, or of a system of equations.
5 Minute Preview

Solving Linear Systems (Slope-Intercept Form)

Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an *x*, *y*)

Solving Linear Systems (Standard Form)

Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (*x*, *y*) values are solutions of an equation, or of a system of equations.
5 Minute Preview

### M2.F: : Functions

M2.F.IF: : Interpreting Functions

M2.F.IF.A: : Interpret functions that arise in applications in terms of the context.

M2.F.IF.A.1: : For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities and sketch graphs showing key features given a verbal description of the relationship.

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview

Quadratics in Factored Form

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

M2.F.IF.A.2: : Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview

Radical Functions

M2.F.IF.A.3: : Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Distance-Time Graphs

Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time and Velocity-Time Graphs

Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview

M2.F.IF.B: : Analyze functions using different representation.

M2.F.IF.B.4: : Graph functions expressed symbolically and show key features of the graph, by hand and using technology.

M2.F.IF.B.4.a: : Graph linear and quadratic functions and show intercepts, maxima, and minima.

Point-Slope Form of a Line

Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Quadratics in Factored Form

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Roots of a Quadratic

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Standard Form of a Line

Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

M2.F.IF.B.4.b: : Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Radical Functions

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

M2.F.IF.B.4.c: : Graph exponential and logarithmic functions, showing intercepts and end behavior.

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

Logarithmic Functions: Translating and Scaling

Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview

M2.F.IF.B.5: : Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

M2.F.IF.B.5.a: : Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Quadratics in Factored Form

Roots of a Quadratic

M2.F.IF.B.5.b: : Know and use the properties of exponents to interpret expressions for exponential functions.

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

M2.F.BF: : Building Functions

M2.F.BF.A: : Build a function that models a relationship between two quantities.

M2.F.BF.A.1: : Write a function that describes a relationship between two quantities.

M2.F.BF.A.1.a: : Determine an explicit expression, a recursive process, or steps for calculation from a context.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

M2.F.BF.A.1.b: : Combine standard function types using arithmetic operations.

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview

M2.F.BF.B: : Build new functions from existing functions.

M2.F.BF.B.2: : Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview

Quadratics in Polynomial Form

Quadratics in Vertex Form

Radical Functions

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

### M2.G: : Geometry

M2.G.SRT: : Similarity, Right Triangles, and Trigonometry

M2.G.SRT.A: : Understand similarity in terms of similarity transformations.

M2.G.SRT.A.1: : Verify informally the properties of dilations given by a center and a scale factor.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

M2.G.SRT.A.2: : Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

M2.G.SRT.A.3: : Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Similar Figures

Vary the scale factor and rotation of an image and compare it to the preimage. Determine how the angle measures and side lengths of the two figures are related. 5 Minute Preview

M2.G.SRT.B: : Prove theorems involving similarity.

M2.G.SRT.B.4: : Prove theorems about similar triangles.

Similar Figures

Similarity in Right Triangles

Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview

M2.G.SRT.B.5: : Use congruence and similarity criteria for triangles to solve problems and to justify relationships in geometric figures.

Chords and Arcs

Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview

Congruence in Right Triangles

Apply constraints to two right triangles. Then drag their vertices around under those conditions. Determine under what conditions the triangles are guaranteed to be congruent. 5 Minute Preview

Perimeters and Areas of Similar Figures

Manipulate two similar figures and vary the scale factor to see what changes are possible under similarity. Explore how the perimeters and areas of two similar figures compare. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Similar Figures

Similarity in Right Triangles

Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview

M2.G.SRT.C: : Define trigonometric ratios and solve problems involving triangles.

M2.G.SRT.C.6: : Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Sine, Cosine, and Tangent Ratios

Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview

M2.G.SRT.C.7: : Explain and use the relationship between the sine and cosine of complementary angles.

Cosine Function

Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview

Sine Function

Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview

M2.G.SRT.C.8: : Solve triangles.

M2.G.SRT.C.8.a: : Know and use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Distance Formula

Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Pythagorean Theorem with a Geoboard

Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview

Sine, Cosine, and Tangent Ratios

Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview

M2.G.GMD: : Geometric Measurement and Dimension

M2.G.GMD.A: : Explain volume and surface area formulas and use them to solve problems.

M2.G.GMD.A.1: : Give an informal argument for the formulas for the circumference of a circle and the volume and surface area of a cylinder, cone, prism, and pyramid.

Circumference and Area of Circles

Resize a circle and compare its radius, circumference, and area. 5 Minute Preview

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

Pyramids and Cones

Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview

Surface and Lateral Areas of Prisms and Cylinders

Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview

Surface and Lateral Areas of Pyramids and Cones

Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview

M2.G.GMD.A.2: : Know and use volume and surface area formulas for cylinders, cones, prisms, pyramids, and spheres to solve problems.

Measuring Volume

Measure the volume of liquids and solids using beakers, graduated cylinders, overflow cups, and rulers. Water can be poured from one container to another and objects can be added to containers. A pipette can be used to transfer small amounts of water, and a magnifier can be used to observe the meniscus in a graduated cylinder. Test your volume-measurement skills in the "Practice" mode of the Gizmo. 5 Minute Preview

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

Pyramids and Cones

Vary the height and base-edge or radius length of a pyramid or cone and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of a skew pyramid or cone to the volume of a right pyramid or cone. 5 Minute Preview

Surface and Lateral Areas of Prisms and Cylinders

Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview

Surface and Lateral Areas of Pyramids and Cones

Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview

### M2.S: : Statistics and Probability

M2.S.ID: : Interpreting Categorical and Quantitative Data

M2.S.ID.A: : Summarize, represent, and interpret data on two categorical and quantitative variables.

M2.S.ID.A.1: : Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

M2.S.ID.A.1.a: : Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview

M2.S.CP: : Conditional Probability and the Rules of Probability

M2.S.CP.A: : Understand independence and conditional probability and use them to interpret data.

M2.S.CP.A.2: : Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

M2.S.CP.A.4: : Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

Correlation last revised: 2/1/2022

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available Jul 01, 2023.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote