- Home
- Find Gizmos
- Browse by Standard (CAN)
- Nebraska Standards
- Mathematics: 7th Grade
Saskatchewan - Mathematics: 7th Grade
Saskatchewan Foundational and Learning Objective | Adopted: 2007
N7: : Number
N7.2: : Expand and demonstrate understanding of the addition, subtraction, multiplication, and division of decimals to greater numbers of decimal places, and the order of operations.
N7.2.d: : Solve a problem involving the addition, or subtraction, of two or more decimal numbers.
Sums and Differences with Decimals
Find the sum or difference of two decimal numbers using area models. Find the decimals and their sum or difference on a number line. 5 Minute Preview
N7.2.g: : Check the reasonableness of solutions using estimation.
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
N7.2.i: : Explain by using examples why it is important to follow a specific order of operations when calculating with decimals and/or whole numbers.
Order of Operations
Select and evaluate the operations in an expression following the correct order of operations. 5 Minute Preview
N7.3: : Demonstrate an understanding of the relationships between positive decimals, positive fractions (including mixed numbers, proper fractions and improper fractions), and whole numbers.
N7.3.b: : Match a set of fractions to their decimal representations.
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
N7.3.k: : Identify, with justification, a number that would be between two given numbers (decimal, fraction, and/or whole numbers) in an ordered sequence or shown on a number line.
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
N7.3.l: : Identify incorrectly placed numbers within an ordered sequence or shown on a number line.
Comparing and Ordering Decimals
Use grids to model decimal numbers and compare them graphically. Then compare the numbers on a number line. 5 Minute Preview
Fraction Garden (Comparing Fractions)
Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview
Integers, Opposites, and Absolute Values
Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview
Rational Numbers, Opposites, and Absolute Values
Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview
N7.4: : Expand and demonstrate an understanding of percent to include fractional percents between 1% and 100%.
N7.4.b: : Express a percent as a decimal or fraction.
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
N7.4.c: : Solve a problem that involves finding a percent.
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Real-Time Histogram
Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview
Time Estimation
Try to estimate the passage of time by selecting a time interval, clicking the Start button, and clicking Stop when you think the interval has passed. The estimate and percent error are recorded. Compare different techniques for estimating time, as well as the average error for long time intervals versus shorter intervals. 5 Minute Preview
N7.4.d: : Solve a problem that involves finding percents of a value.
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
N7.5: : Develop and demonstrate an understanding of adding and subtracting positive fractions and mixed numbers, with like and unlike denominators, concretely, pictorially, and symbolically (limited to positive sums and differences).
N7.5.g: : Simplify a positive fraction or mixed number by identifying and dividing off the common factor between the numerator and denominator.
Multiplying Fractions
Multiply two fractions using an area model. Vary the vertical area to change one fraction and vary the horizontal area to change the other. Then examine the intersection of the areas to find the product. 5 Minute Preview
N7.5.i: : Solve a problem involving the addition or subtraction of positive fractions or mixed numbers.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Estimating Sums and Differences
Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Fractions with Unlike Denominators
Find the sum or difference of two fractions with unlike denominators using graphic models. Find the least common denominator graphically. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
N7.6: : Demonstrate an understanding of addition and subtraction of integers, concretely, pictorially, and symbolically.
N7.6.b: : Explain, using concrete materials such as integer tiles and diagrams, that the sum of opposite integers is zero (e.g., a move in one direction followed by an equivalent move in the opposite direction results in no net change in position).
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
N7.6.c: : Illustrate, using a number line, the results of adding or subtracting negative and positive integers.
Adding and Subtracting Integers
Add and subtract integers on a number line using dynamic arrows. 5 Minute Preview
Adding on the Number Line
Add real numbers using dynamic arrows on a number line. Find the sum of the numbers at the end of the final arrow. Compare the numerical calculation. 5 Minute Preview
N7.6.d: : Add two integers using concrete materials or pictorial representations and record the process symbolically.
Addition of Polynomials
Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview
P7: : Patterns and Relations
P7.1: : Demonstrate an understanding of the relationships between oral and written patterns, graphs and linear relations.
P7.1.f: : Create a table of values for a linear relation by evaluating the relation for different variable values.
Function Machines 1 (Functions and Tables)
Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview
P7.2: : Demonstrate an understanding of equations and expressions by: distinguishing between equations and expressions, evaluating expressions, verifying solutions to equations.
P7.2.a: : Explain what a variable is and how it is used in an expression.
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
P7.2.b: : Provide an example of an expression and an equation, and explain how they are similar and different.
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
P7.2.c: : Explain how to evaluate an expression and how that result is different from a solution to an equation.
Order of Operations
Select and evaluate the operations in an expression following the correct order of operations. 5 Minute Preview
P7.3: : Demonstrate an understanding of one-and two-step linear equations of the form ax/b + c = d (where a, b, c, and d are whole numbers, c less than or equal to d and b does not equal 0) by modeling the solution of the equations concretely, pictorially, physically, and symbolically and explaining the solution in terms of the preservation of equality.
P7.3.b: : Generalize strategies for carrying out operations that involve the use of the preservation of equality.
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
P7.3.c: : Solve an equation by applying the preservation of equality.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
P7.3.d: : Identify and provide an example of a constant term, a numerical coefficient, and a variable in an expression and an equation.
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
Solving Algebraic Equations I
Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
P7.3.g: : Verify the solution to a linear equation using concrete materials or diagrams.
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
P7.3.i: : Represent a problem situation using a linear equation.
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
P7.3.j: : Solve a problem using a linear equation.
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
P7.4: : Demonstrate an understanding of linear equations of the form x + a = b (where a and b are integers) by modeling problems as a linear equation and solving the problems concretely, pictorially, and symbolically.
P7.4.b: : Verify a solution to a problem involving a linear equation of the form x + a = b where a and b are integers.
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
SS7: : Shape and Space
SS7.1: : Demonstrate an understanding of circles including circumference and central angles.
SS7.1.a: : Identify the characteristics of a circle.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
SS7.1.b: : Define and illustrate the relationship between the diameter and radius of a circle.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
SS7.1.g: : Generalize, from investigations, the relationship between the circumference and the diameter of a circle.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
SS7.1.i: : Sort a set of angles as central angles of a circle or not.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
SS7.1.l: : Solve problems involving circles.
Chords and Arcs
Explore the relationship between a central angle and the arcs it intercepts. Also explore the relationship between chords and their distance from the circle's center. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
SS7.2: : Develop and apply formulas for determining the area of: triangles, parallelograms, circles.
SS7.2.a: : Illustrate and explain how the area of a rectangle can be used to determine the area of a triangle.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
SS7.2.b: : Generalize, using examples, a formula for determining the area of triangles.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
SS7.2.c: : Illustrate and explain how the area of a rectangle can be used to determine the area of a parallelogram.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
SS7.2.d: : Generalize, using examples, a formula for determining the area of parallelograms.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
SS7.2.g: : Generalize a formula for finding the area of a circle.
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
SS7.2.h: : Solve problems involving the area of triangles, parallelograms, or circles.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
SS7.3: : Demonstrate an understanding of 2-D relationships involving lines and angles.
SS7.3.a: : Identify and describe examples of parallel line segments, perpendicular line segments, perpendicular bisectors, and angle bisectors in the environment.
Parallel, Intersecting, and Skew Lines
Explore the properties of intersecting, parallel, and skew lines as well as lines in the plane. Rotate the plane and lines in three-dimensional space to ensure a full understanding of these objects. 5 Minute Preview
SS7.3.c: : Investigate and explain how paper, pencil, compass, and rulers can be used to construct parallel lines, perpendicular lines, angle bisectors, and perpendicular bisectors.
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
SS7.3.e: : Use technology to construct parallel lines, perpendicular lines, angle bisectors, and perpendicular bisectors.
Parallel, Intersecting, and Skew Lines
Explore the properties of intersecting, parallel, and skew lines as well as lines in the plane. Rotate the plane and lines in three-dimensional space to ensure a full understanding of these objects. 5 Minute Preview
SS7.3.h: : Draw the bisector of a given angle using more than one method and verify that the resulting angles are equal.
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
SS7.3.i: : Draw the perpendicular bisector of a line segment using more than one method and verify the construction.
Segment and Angle Bisectors
Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview
SS7.4: : Demonstrate an understanding of the Cartesian plane and ordered pairs with integral coordinates.
SS7.4.a: : Label the axes of a four quadrant Cartesian plane and identify the origin.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
SS7.4.c: : Identify the location of a point in any quadrant of a Cartesian plane using an ordered pair with integral coordinates.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
SS7.4.d: : Plot the point corresponding to an ordered pair with integral coordinates on a Cartesian plane with a scale of 1, 2, 5, or 10 on its axes.
Points in the Coordinate Plane
Identify the coordinates of a point in the coordinate plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
SP7: : Statistics and Probability
SP7.1: : Demonstrate an understanding of the measures of central tendency and range for sets of data.
SP7.1.a: : Concretely represent mean, median, and mode and explain the similarities and differences among them.
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
SP7.1.b: : Determine mean, median, and mode for a set of data, and explain why these values may be the same or different.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
SP7.1.c: : Determine the range of a set of data.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
SP7.1.d: : Provide a context in which the mean, median, or mode is the most appropriate measure of central tendency to use when reporting findings and explain the choice.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
SP7.1.e: : Solve a problem involving the measures of central tendency.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
SP7.1.f: : Analyze a set of data to identify any outliers.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
SP7.1.g: : Explain the effect of outliers on the measures of central tendency for a data set.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
SP7.1.h: : Identify outliers in a set of data and justify whether or not they should be included in the reporting of the measures of central tendency.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
SP7.1.i: : Provide examples of situations in which outliers would and would not be used in reporting the measures of central tendency.
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Mean, Median, and Mode
Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview
Movie Reviewer (Mean and Median)
Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
SP7.1.j: : Explain why qualitative data, such as colour or favourite activity, cannot be analyzed for all three measures of central tendency.
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
SP7.2: : Demonstrate an understanding of circle graphs.
SP7.2.a: : Identify common attributes of circle graphs, such as:
SP7.2.a.3: : the data is reported as a percent of the total and the sum of the percents is equal to 100%.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
SP7.2.b: : Create and label a circle graph, with and without technology, to display a set of data.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
SP7.2.c: : Find, describe, and compare circle graphs in a variety of print and electronic media such as newspapers, magazines, and the Internet.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
SP7.2.e: : Interpret a circle graph to answer questions.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
SP7.2.f: : Identify the characteristics of a set of data that make it possible to create a circle graph.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
SP7.3: : Demonstrate an understanding of theoretical and experimental probabilities for two independent events where the combined sample space has 36 or fewer elements.
SP7.3.a: : Explain what a probability tells about the situation to which it refers.
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.b: : Provide an example of two independent events, such as:
SP7.3.b.1: : spinning a four section spinner and an eight-sided die
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.b.2: : tossing a coin and rolling a twelve-sided die
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.b.3: : tossing two coins
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.b.4: : rolling two dice and explain why they are independent.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.d: : Determine the theoretical probability of an outcome involving two independent events.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.e: : Conduct a probability experiment for an outcome involving two independent events, with and without technology, to compare the experimental probability to the theoretical probability.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.f: : Solve a probability problem involving two independent events.
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.g: : Explain how theoretical and experimental probabilities are related and why they cannot be assumed to be equal.
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.h: : Represent a probability stated as a percent as a fraction or a decimal.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
SP7.3.i: : Represent a probability stated as a fraction or decimal as a percent.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Spin the Big Wheel! (Probability)
Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote