- Home
- Find Gizmos
- Browse by Standard (USA)
- Maine Standards
- Science: Biology
Texas - Science: Biology
Essential Knowledge and Skills (Implemented Fall 2024) | Adopted: 2020
B.1: : Scientific and engineering practices. The student, for at least 40% of instructional time, asks questions, identifies problems, and plans and safely conducts classroom, laboratory, and field investigations to answer questions, explain phenomena, or design solutions using appropriate tools and models.
B.1.B: : The student is expected to: apply scientific practices to plan and conduct descriptive, comparative, and experimental investigations and use engineering practices to design solutions to problems;
Cell Respiration - High School
As a medical toxicologist, students learn about cell respiration to save the life of a CIA agent that has been poisoned. Video Preview
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
Meowsis - High School
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
Photosynthesis - High School
As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview
Protein Synthesis - High School
As a pediatrician, students learn about genes and protein synthesis to try to help a baby girl named Lucy who has an immunodeficiency disease. Video Preview
B.1.D: : The student is expected to: use appropriate tools such as microscopes, slides, Petri dishes, laboratory glassware, metric rulers, digital balances, pipets, filter paper, micropipettes, gel electrophoresis and polymerase chain reaction (PCR) apparatuses, microcentrifuges, water baths, incubators, thermometers, hot plates, data collection probes, test tube holders, lab notebooks or journals, hand lenses, and models, diagrams, or samples of biological specimens or structures;
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
DNA Profiling
Learn how DNA is compared to identify individuals. Identify the sections of DNA that tend to differ and use PCR to amplify these segments. Then use gel electrophoresis to create DNA profiles. Based on what you have learned, create your own DNA profiling test and use this test to analyze crime scene evidence. 5 Minute Preview
B.1.F: : The student is expected to: organize quantitative and qualitative data using scatter plots, line graphs, bar graphs, charts, data tables, digital tools, diagrams, scientific drawings, and student-prepared models;
Embryo Development
Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview
GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview
Natural Selection
You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview
Rainfall and Bird Beaks - Metric
Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
B.1.G: : The student is expected to: develop and use models to represent phenomena, systems, processes, or solutions to engineering problems; and
Embryo Development
Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview
GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview
Genetic Engineering
Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview
Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
B.2: : Scientific and engineering practices. The student analyzes and interprets data to derive meaning, identify features and patterns, and discover relationships or correlations to develop evidence-based arguments or evaluate designs.
B.2.B: : The student is expected to: analyze data by identifying significant statistical features, patterns, sources of error, and limitations;
Chicken Genetics
Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview
Fast Plants® 1 - Growth and Genetics
Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview
Fast Plants® 2 - Mystery Parent
In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview
Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
B.2.C: : The student is expected to: use mathematical calculations to assess quantitative relationships in data; and
Chicken Genetics
Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview
Fast Plants® 1 - Growth and Genetics
Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview
Fast Plants® 2 - Mystery Parent
In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
B.3: : Scientific and engineering practices. The student develops evidence-based explanations and communicates findings, conclusions, and proposed solutions.
B.3.A: : The student is expected to: develop explanations and propose solutions supported by data and models and consistent with scientific ideas, principles, and theories;
DNA Profiling
Learn how DNA is compared to identify individuals. Identify the sections of DNA that tend to differ and use PCR to amplify these segments. Then use gel electrophoresis to create DNA profiles. Based on what you have learned, create your own DNA profiling test and use this test to analyze crime scene evidence. 5 Minute Preview
GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
Homeostasis - High School
In the role of a physician assistant, students help a young man, named Anthony, who has Type II diabetes and high blood pressure. Students must make a diagnosis and then must apply the principles of filtration and homeostasis to help Anthony. Video Preview
Meowsis - High School
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview
B.3.B: : The student is expected to: communicate explanations and solutions individually and collaboratively in a variety of settings and formats; and
Building DNA
Construct a DNA molecule, examine its double-helix structure, and then go through the DNA replication process. Learn how each component fits into a DNA molecule, and see how a unique, self-replicating code can be created. 5 Minute Preview
Cell Division
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Diffusion - High School
As a physician assistant, students must learn about diffusion to save the life of a person poisoned by chlorine gas that was released into a small town following a train crash. Video Preview
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
Homeostasis - High School
In the role of a physician assistant, students help a young man, named Anthony, who has Type II diabetes and high blood pressure. Students must make a diagnosis and then must apply the principles of filtration and homeostasis to help Anthony. Video Preview
B.5: : Science concepts--biological structures, functions, and processes. The student knows that biological structures at multiple levels of organization perform specific functions and processes that affect life.
B.5.A: : The student is expected to: relate the functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids, to the structure and function of a cell;
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
B.5.B: : The student is expected to: compare and contrast prokaryotic and eukaryotic cells, including their complexity, and compare and contrast scientific explanations for cellular complexity;
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
B.5.C: : The student is expected to: investigate homeostasis through the cellular transport of molecules; and
Osmosis
Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
Diffusion - High School
As a physician assistant, students must learn about diffusion to save the life of a person poisoned by chlorine gas that was released into a small town following a train crash. Video Preview
Homeostasis - High School
In the role of a physician assistant, students help a young man, named Anthony, who has Type II diabetes and high blood pressure. Students must make a diagnosis and then must apply the principles of filtration and homeostasis to help Anthony. Video Preview
Osmosis - High School
As a veterinarian, students help a young calf, named Clark, who is having seizures. To determine the cause, the students fly into Clark's brain to learn about osmosis and apply their learning to save Clark. Video Preview
B.5.D: : The student is expected to: compare the structures of viruses to cells and explain how viruses spread and cause disease.
Virus Lytic Cycle
Release a lytic virus in a group of cells and observe how cells are infected over time and eventually destroyed. Data related to the number of healthy cells, infected cells, and viruses can be recorded over time to determine the time required for the virus to mature within a cell. 5 Minute Preview
B.6: : Science concepts--biological structures, functions, and processes. The student knows how an organism grows and the importance of cell differentiation.
B.6.A: : The student is expected to: explain the importance of the cell cycle to the growth of organisms, including an overview of the stages of the cell cycle and deoxyribonucleic acid (DNA) replication models;
Cell Division
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview
Meowsis - High School
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview
B.6.B: : The student is expected to: explain the process of cell specialization through cell differentiation, including the role of environmental factors; and
Embryo Development
Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview
B.6.C: : The student is expected to: relate disruptions of the cell cycle to how they lead to the development of diseases such as cancer.
Cell Division
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview
B.7: : Science concepts--mechanisms of genetics. The student knows the role of nucleic acids in gene expression.
B.7.A: : The student is expected to: identify components of DNA, explain how the nucleotide sequence specifies some traits of an organism, and examine scientific explanations for the origin of DNA;
Building DNA
Construct a DNA molecule, examine its double-helix structure, and then go through the DNA replication process. Learn how each component fits into a DNA molecule, and see how a unique, self-replicating code can be created. 5 Minute Preview
DNA Analysis
Scan the DNA of frogs to produce DNA sequences. Use the DNA sequences to identify possible identical twins and to determine which sections of DNA code for skin color, eye color, and the presence or absence of spots. 5 Minute Preview
B.7.B: : The student is expected to: describe the significance of gene expression and explain the process of protein synthesis using models of DNA and ribonucleic acid (RNA);
RNA and Protein Synthesis
Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview
Protein Synthesis - High School
As a pediatrician, students learn about genes and protein synthesis to try to help a baby girl named Lucy who has an immunodeficiency disease. Video Preview
B.7.C: : The student is expected to: identify and illustrate changes in DNA and evaluate the significance of these changes; and
Evolution: Mutation and Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview
Evolution: Natural and Artificial Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview
Meowsis - High School
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview
B.7.D: : The student is expected to: discuss the importance of molecular technologies such as polymerase chain reaction (PCR), gel electrophoresis, and genetic engineering that are applicable in current research and engineering practices.
DNA Profiling
Learn how DNA is compared to identify individuals. Identify the sections of DNA that tend to differ and use PCR to amplify these segments. Then use gel electrophoresis to create DNA profiles. Based on what you have learned, create your own DNA profiling test and use this test to analyze crime scene evidence. 5 Minute Preview
GMOs and the Environment
In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview
Genetic Engineering
Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview
B.8: : Science concepts--mechanisms of genetics. The student knows the role of nucleic acids and the principles of inheritance and variation of traits in Mendelian and non-Mendelian genetics.
B.8.A: : The student is expected to: analyze the significance of chromosome reduction, independent assortment, and crossing-over during meiosis in increasing diversity in populations of organisms that reproduce sexually; and
Meiosis
Explore how sex cells are produced by the process of meiosis. Compare meiosis in male and female germ cells, and use crossovers to increase the number of possible gamete genotypes. Using meiosis and crossovers, create "designer" fruit fly offspring with desired trait combinations. 5 Minute Preview
Meowsis - High School
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview
B.8.B: : The student is expected to: predict possible outcomes of various genetic combinations using monohybrid and dihybrid crosses, including non-Mendelian traits of incomplete dominance, codominance, sex-linked traits, and multiple alleles.
Chicken Genetics
Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview
Fast Plants® 1 - Growth and Genetics
Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview
Fast Plants® 2 - Mystery Parent
In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview
Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
B.9: : Science concepts--biological evolution. The student knows evolutionary theory is a scientific explanation for the unity and diversity of life that has multiple lines of evidence.
B.9.A: : The student is expected to: analyze and evaluate how evidence of common ancestry among groups is provided by the fossil record, biogeography, and homologies, including anatomical, molecular, and developmental; and
Embryo Development
Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview
B.10: : Science concepts--biological evolution. The student knows evolutionary theory is a scientific explanation for the unity and diversity of life that has multiple mechanisms.
B.10.A: : The student is expected to: analyze and evaluate how natural selection produces change in populations and not in individuals;
Evolution: Mutation and Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview
Evolution: Natural and Artificial Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview
Natural Selection
You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview
Evolution - High School
Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview
B.10.B: : The student is expected to: analyze and evaluate how the elements of natural selection, including inherited variation, the potential of a population to produce more offspring than can survive, and a finite supply of environmental resources, result in differential reproductive success;
Evolution: Mutation and Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview
Evolution: Natural and Artificial Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview
Natural Selection
You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview
Evolution - High School
Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview
B.10.D: : The student is expected to: analyze evolutionary mechanisms other than natural selection, including genetic drift, gene flow, mutation, and genetic recombination, and their effect on the gene pool of a population.
Evolution - High School
Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview
B.11: : Science concepts--biological structures, functions, and processes. The student knows the significance of matter cycling, energy flow, and enzymes in living organisms.
B.11.A: : The student is expected to: explain how matter is conserved and energy is transferred during photosynthesis and cellular respiration using models, including the chemical equations for these processes; and
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Cell Respiration - High School
As a medical toxicologist, students learn about cell respiration to save the life of a CIA agent that has been poisoned. Video Preview
Photosynthesis - High School
As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview
B.11.B: : The student is expected to: investigate and explain the role of enzymes in facilitating cellular processes.
Cell Respiration - High School
As a medical toxicologist, students learn about cell respiration to save the life of a CIA agent that has been poisoned. Video Preview
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
B.12: : Science concepts--biological structures, functions, and processes. The student knows that multicellular organisms are composed of multiple systems that interact to perform complex functions.
B.12.A: : The student is expected to: analyze the interactions that occur among systems that perform the functions of regulation, nutrient absorption, reproduction, and defense from injury or illness in animals; and
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
B.13: : Science concepts--interdependence within environmental systems. The student knows that interactions at various levels of organization occur within an ecosystem to maintain stability.
B.13.A: : The student is expected to: investigate and evaluate how ecological relationships, including predation, parasitism, commensalism, mutualism, and competition, influence ecosystem stability;
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
B.13.B: : The student is expected to: analyze how ecosystem stability is affected by disruptions to the cycling of matter and flow of energy through trophic levels using models;
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
B.13.C: : The student is expected to: explain the significance of the carbon and nitrogen cycles to ecosystem stability and analyze the consequences of disrupting these cycles; and
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
Ocean Carbon Equilibrium - High School
Mussel farmers in the Arctic Ocean have reported problems with their mussels. They have noticed that the mussel shells have eroded and become brittle. Students take on the role of a marine chemist to analyze the changes to ocean carbon chemistry and equilibrium to determine the cause of the mussel shell erosion. Video Preview
B.13.D: : The student is expected to: explain how environmental change, including change due to human activity, affects biodiversity and analyze how changes in biodiversity impact ecosystem stability.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
Photosynthesis - High School
As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview
Correlation last revised: 7/30/2024
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote