- Home
- Find Gizmos
- Browse by Standard (USA)
- Minnesota Standards
- Science: 7th Grade
Ohio - Science: 7th Grade
Learning Standards | Adopted: 2018
ESS: : Earth and Space Science
1.1: : Cycles and Patterns of Earth and the Moon
7.ESS.1: : The hydrologic cycle illustrates the changing states of water as it moves through the lithosphere, biosphere, hydrosphere and atmosphere.
7.ESS.1.a: : Thermal energy is transferred as water changes state throughout the cycle. The cycling of water in the atmosphere is an important part of weather patterns on Earth. The rate at which water flows through soil and rock is dependent upon the porosity and permeability of the soil or rock.
Porosity
Pour water on a variety of sediment samples to find how much water can be absorbed by the sample (porosity) and how easily water flows through the sample (permeability). 5 Minute Preview
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
7.ESS.2: : Thermal-energy transfers in the ocean and the atmosphere contribute to the formation of currents, which influence global climate patterns.
7.ESS.2.a: : The sun is the major source of energy for wind, air and ocean currents and the hydrologic cycle. As thermal energy transfers occur in the atmosphere and ocean, currents form. Large bodies of water can influence weather and climate. The jet stream is an example of an atmospheric current and the Gulf Stream is an example of an oceanic current. Ocean currents are influenced by factors other than thermal energy, such as water density, mineral content (such as salinity), ocean floor topography and Earth’s rotation. All of these factors delineate global climate patterns on Earth.
Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
7.ESS.3: : The atmosphere has different properties at different elevations and contains a mixture of gases that cycle through the lithosphere, biosphere, hydrosphere and atmosphere.
7.ESS.3.a: : The atmosphere is held to the Earth by the force of gravity. There are defined layers of the atmosphere that have specific properties, such as temperature, chemical composition and physical characteristics. Gases in the atmosphere include nitrogen, oxygen, water vapor, carbon dioxide and other trace gases. Biogeochemical cycles illustrate the movement of specific elements or molecules (such as carbon or nitrogen) through the lithosphere, biosphere, hydrosphere and atmosphere.
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
7.ESS.4: : The relative patterns of motion and positions of Earth, moon and sun cause solar and lunar eclipses, tides and phases of the moon.
7.ESS.4.a: : The moon’s orbit and its change of position relative to Earth and sun result in different parts of the moon being visible from Earth (phases of the moon).
Moonrise, Moonset, and Phases
Gain an understanding of moonrise and moonset times by observing the relative positions of Earth and the Moon along with a view of the Moon from Earth. A line shows the horizon for a person standing on Earth so that moonrise and moonset times can be determined. 5 Minute Preview
Phases of the Moon
Understand the phases of the Moon by observing the positions of the Moon, Earth and Sun. A view of the Moon from Earth is shown on the right as the Moon orbits Earth. Learn the names of Moon phases and in what order they occur. Click Play to watch the Moon go around, or click Pause and drag the Moon yourself. 5 Minute Preview
7.ESS.4.b: : A solar eclipse is when Earth moves into the shadow of the moon (during a new moon). A lunar eclipse is when the moon moves into the shadow of Earth (during a full moon).
2D Eclipse
Manipulate the position of the Moon to model solar and lunar eclipses. View Earth's shadow, the Moon's shadow, or both. Observe the Moon and Sun from Earth during a partial and total eclipse. The sizes of the three bodies and the Earth-Moon distance can be adjusted. 5 Minute Preview
3D Eclipse
Observe the motions of the Earth, Moon and Sun in three dimensions to investigate the causes and frequency of eclipses. Observe Earth's shadow crossing the Moon during a lunar eclipse, and the path of the Moon's shadow across Earth's surface during a solar eclipse. The angle of the Moon's orbit can be adjusted, as well as the distance of the Moon from the Earth. 5 Minute Preview
7.ESS.4.c: : Gravitational force between Earth and the moon causes daily oceanic tides. When the gravitational forces from the sun and moon align (at new and full moons) spring tides occur. When the gravitational forces of the sun and moon are perpendicular (at first and last quarter moons), neap tides occur.
Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
7.ESS.5: : The relative positions of Earth and the sun cause patterns we call seasons.
7.ESS.5.a: : Earth’s axis is tilted at an angle of 23.5°. This tilt along with Earth’s revolution around the sun, affects the amount of direct sunlight that the earth receives in a single day and throughout the year. The average daily temperature is related to the amount of direct sunlight received.
Seasons Around the World
Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview
Seasons in 3D
Gain an understanding of the causes of seasons by observing Earth as it orbits the Sun in three dimensions. Observe the path of the Sun across the sky on any date and from any location. Create graphs of solar intensity and day length, and use collected data to describe and explain seasonal changes. 5 Minute Preview
Seasons: Why do we have them?
Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview
Summer and Winter
Observe the tilt of Earth's axis and the angle that sunlight strikes Earth on June 21 and December 21. Compare day lengths, temperatures, and the angle of the Sun's rays for any latitude. The tilt of the Earth's axis can be varied to see how this would affect seasons. 5 Minute Preview
LS: : Life Science
2.1: : Cycles of Matter and Flow of Energy
7.LS.1: : Energy flows and matter is transferred continuously from one organism to another and between organisms and their physical environments.
7.LS.1.a: : Plants use the energy in light to make sugars out of carbon dioxide and water (photosynthesis). These materials can be used or stored for later use. Organisms that eat plants break down plant structures to release the energy and produce the materials they need to survive. The organism may then be consumed by other organisms for materials and energy.
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview
Photosynthesis Lab
Study photosynthesis in a variety of conditions. Oxygen production is used to measure the rate of photosynthesis. Light intensity, carbon dioxide levels, temperature, and wavelength of light can all be varied. Determine which conditions are ideal for photosynthesis, and understand how limiting factors affect oxygen production. 5 Minute Preview
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
7.LS.1.c: : The total amount of matter and energy remains constant, even though its form and location change.
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
7.LS.2: : In any particular biome, the number, growth and survival of organisms and populations depend on biotic and abiotic factors.
7.LS.2.a: : The variety of physical (abiotic) conditions that exists on Earth gives rise to diverse environments (biomes) and allows for the existence of a wide variety of organisms (biodiversity).
Comparing Climates (Metric)
Compare average temperatures, precipitation, humidity, and wind speed for a variety of locations across the globe. Explore the influence of latitude, proximity to oceans, elevation, and other factors on climate. Observe how animals and plants are adapted to climate and their environment. This lesson uses metric units. 5 Minute Preview
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
7.LS.2.c: : Ecosystems are dynamic in nature; the number and types of species fluctuate over time. Disruptions, deliberate or inadvertent, to the physical (abiotic) or biological (biotic) components of an ecosystem impact the composition of an ecosystem.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
Rabbit Population by Season
Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview
PS: : Physical Science
3.1: : Cycles of Mass and Energy
7.PS.1: : Elements can be organized by properties.
7.PS.1.a: : Elements can be classified as metals, non-metals and metalloids, and can be organized by similar properties such as color, solubility, hardness, density, conductivity, melting point and boiling point, viscosity, and malleability.
Circuit Builder
Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview
Melting Points
Every substance has unique transition points, or temperatures at which one phase (solid, liquid, or gas) transitions to another. Use a realistic melting point apparatus to measure the melting points, boiling points, and/or sublimation points of different substances and observe what these phase changes look like at the microscopic level. Based on the transition points, make inferences about the relative strengths of the forces holding these substances together. 5 Minute Preview
7.PS.2: : Matter can be separated or changed, but in a closed system, the number and types of atoms remains constant.
7.PS.2.a: : When substances interact and form new substances the properties of the new substances may be very different from those of the original substances, but the amount of mass does not change.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview
7.PS.3: : Energy can be transformed or transferred but is never lost.
7.PS.3.a: : When energy is transferred from one system to another, the quantity of energy before transfer equals the quantity of energy after transfer. When energy is transformed from one form to another, the total amount of energy remains the same.
Air Track
Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Energy of a Pendulum
Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
Trebuchet
Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview
7.PS.4: : Energy can be transferred through a variety of ways.
7.PS.4.a: : Mechanical energy can be transferred when objects push or pull on each other over a distance.
Sled Wars
Explore acceleration, speed, momentum, and energy by sending a sled down a hill into a group of snowmen. The starting height and mass of the sled can be changed, as well as the number of snowmen. In the Two sleds scenario, observe collisions between sleds of different masses and starting heights. 5 Minute Preview
Trebuchet
Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview
7.PS.4.b: : Mechanical and electromagnetic waves transfer energy when they interact with matter.
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
Longitudinal Waves
Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview
Radiation
Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview
Waves
Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview
7.PS.4.c: : Thermal energy can be transferred through radiation, convection and conduction.
Conduction and Convection
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
Herschel Experiment - Metric
Shine sunlight through a prism and use a thermometer to measure the temperature in different regions of the spectrum. The thermometer can be dragged through the visible spectrum and beyond. This recreates the experiment of William Herschel that led to the discovery of infrared radiation in 1800. 5 Minute Preview
Radiation
Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview
7.PS.4.d: : An electrical circuit transfers energy from a source to a device.
Circuit Builder
Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote