- Home
- Find Gizmos
- Browse by Standard

# Arizona - Mathematics: Algebra I

## Academic Standards | Adopted: 2016

### A1.A: : Algebra

A1.A-SSE: : Seeing Structure in Expressions

A1.A-SSE.A: : Interpret the structure of expressions.

A1.A-SSE.A.1: : Interpret expressions that represent a quantity in terms of its context.

A1.A-SSE.A.1a: : Interpret parts of an expression, such as terms, factors, and coefficients.

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

Operations with Radical Expressions

Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview

Simplifying Algebraic Expressions I

Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview

Simplifying Algebraic Expressions II

Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview

A1.A-SSE.A.1b: : Interpret expressions by viewing one or more of their parts as a single entity.

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

Simplifying Algebraic Expressions I

Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview

Simplifying Algebraic Expressions II

Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

Using Algebraic Expressions

Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview

A1.A-SSE.A.2: : Use structure to identify ways to rewrite numerical and polynomial expressions. Focus on polynomial multiplication and factoring patterns.

Dividing Exponential Expressions

Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Equivalent Algebraic Expressions I

Grumpy’s Restaurant is now hiring! As a new chef at this underwater bistro, you’ll learn the basics of manipulating algebraic expressions. Learn how to make equivalent expressions using the Commutative and Associative properties, how to handle pesky subtraction and division, and how to identify equivalent and non-equivalent expressions. 5 Minute Preview

Equivalent Algebraic Expressions II

Continue your meteoric rise in the undersea culinary world in this follow-up to Equivalent Algebraic Expressions I. Make equivalent expressions by using the distributive property forwards and backwards, sort expressions by equivalence, and personally assist Chef Grumpy himself with a project that will bring him (and maybe you) fame and fortune. 5 Minute Preview

Exponents and Power Rules

Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview

Factoring Special Products

Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Multiplying Exponential Expressions

Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Simplifying Algebraic Expressions I

Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview

Simplifying Algebraic Expressions II

Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview

Simplifying Trigonometric Expressions

Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview

Solving Algebraic Equations II

Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview

Using Algebraic Expressions

Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview

A1.A-SSE.B: : Write expressions in equivalent forms to solve problems.

A1.A-SSE.B.3: : Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

A1.A-SSE.B.3a: : Factor a quadratic expression to reveal the zeros of the function it defines.

Factoring Special Products

Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

A1.A-SSE.B.3b: : Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

A1.A-APR: : Arithmetic with Polynomials and Rational Expressions

A1.A-APR.A: : Perform arithmetic operations on polynomials.

A1.A-APR.A.1: : Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview

Addition of Polynomials

Add polynomials using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient equal to 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

A1.A-APR.B: : Understand the relationship between zeros and factors of polynomials.

A1.A-APR.B.3: : Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Focus on quadratic and cubic polynomials in which linear and quadratic factors are available.

Graphs of Polynomial Functions

Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Polynomials and Linear Factors

Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

A1.A-CED: : Creating Equations

A1.A-CED.A: : Create equations that describe numbers or relationships.

A1.A-CED.A.1: : Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Absolute Value Equations and Inequalities

Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Compound Interest

Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview

Exploring Linear Inequalities in One Variable

Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

Linear Inequalities in Two Variables

Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview

Quadratic Inequalities

Find the solution set to a quadratic inequality using its graph. Vary the terms of the inequality and the inequality symbol. Examine how the boundary curve and shaded region change in response. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Solving Linear Inequalities in One Variable

Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Using Algebraic Equations

Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview

A1.A-CED.A.2: : Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Absolute Value Equations and Inequalities

Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview

Circles

Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview

Compound Interest

Linear Functions

Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview

Point-Slope Form of a Line

Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Points, Lines, and Equations

Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Standard Form of a Line

Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Using Algebraic Equations

Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview

A1.A-CED.A.3: : Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

Linear Inequalities in Two Variables

Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview

Linear Programming

Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview

Solving Linear Systems (Standard Form)

Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (*x*, *y*) values are solutions of an equation, or of a system of equations.
5 Minute Preview

Systems of Linear Inequalities (Slope-intercept form)

Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview

A1.A-CED.A.4: : Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Area of Triangles

Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview

Solving Formulas for any Variable

Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview

A1.A-REI: : Reasoning with Equations and Inequalities

A1.A-REI.A: : Understand solving equations as a process of reasoning and explain the reasoning.

A1.A-REI.A.1: : Explain each step in solving linear and quadratic equations as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview

Solving Algebraic Equations II

Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Solving Formulas for any Variable

Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

A1.A-REI.B: : Solve equations and inequalities in one variable.

A1.A-REI.B.3: : Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Area of Triangles

Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview

Compound Inequalities

Explore the graphs of two inequalities and find their union or intersection. Determine the relationship between the endpoints of the inequalities and the endpoints of the compound inequality. 5 Minute Preview

Exploring Linear Inequalities in One Variable

Solve inequalities in one variable. Examine the inequality on a number line and determine which points are solutions to the inequality. 5 Minute Preview

Linear Inequalities in Two Variables

Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview

Solving Algebraic Equations I

Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations. 5 Minute Preview

Solving Algebraic Equations II

Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Solving Formulas for any Variable

Choose the correct steps to solve a formula for a given variable. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Solving Linear Inequalities in One Variable

Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

A1.A-REI.B.4: : Solve quadratic equations in one variable.

A1.A-REI.B.4a: : Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x - k)² = q that has the same solutions. Derive the quadratic formula from this form.

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

A1.A-REI.B.4b: : Solve quadratic equations by inspection (e.g., x² = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Focus on solutions for quadratic equations that have real roots. Include cases that recognize when a quadratic equation has no real solutions.

Factoring Special Products

Choose the correct steps to factor a polynomial involving perfect-square binomials, differences of squares, or constant factors. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Factor a polynomial with a leading coefficient greater than 1 using an area model. Use step-by-step feedback to diagnose any mistakes. 5 Minute Preview

Modeling the Factorization of *x*^{2}+*bx*+*c*

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

A1.A-REI.C: : Solve systems of equations.

A1.A-REI.C.5: : Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview

Solving Linear Systems (Slope-Intercept Form)

Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an *x*, *y*)

Solving Linear Systems (Standard Form)

Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (*x*, *y*) values are solutions of an equation, or of a system of equations.
5 Minute Preview

A1.A-REI.C.6: : Solve systems of linear equations exactly and approximately, focusing on pairs of linear equations in two variables. Include problem solving opportunities utilizing real-world context.

Cat and Mouse (Modeling with Linear Systems)

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview

Solving Linear Systems (Matrices and Special Solutions)

Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (*x*, *y*) point to be a solution of an equation, or of a system of equations.
5 Minute Preview

Solving Linear Systems (Slope-Intercept Form)

Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an *x*, *y*)

Solving Linear Systems (Standard Form)

Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (*x*, *y*) values are solutions of an equation, or of a system of equations.
5 Minute Preview

A1.A-REI.D: : Represent and solve equations and inequalities graphically.

A1.A-REI.D.10: : Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve, which could be a line.

Absolute Value Equations and Inequalities

Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response. 5 Minute Preview

Circles

Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview

Ellipses

Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview

Hyperbolas

Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview

Parabolas

Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview

Point-Slope Form of a Line

Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Points, Lines, and Equations

Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview

Standard Form of a Line

Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

A1.A-REI.D.11: : Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately (e.g., using technology to graph the functions, make tables of values, or find successive approximations). Focus on cases where f(x) and/or g(x) are linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Cat and Mouse (Modeling with Linear Systems)

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview

Point-Slope Form of a Line

Compare the point-slope form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview

Solving Linear Systems (Matrices and Special Solutions)

Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (*x*, *y*) point to be a solution of an equation, or of a system of equations.
5 Minute Preview

Solving Linear Systems (Slope-Intercept Form)

Solve systems of linear equations, given in slope-intercept form, both graphically and algebraically. Use a draggable green point to examine what it means for an *x*, *y*)

Standard Form of a Line

Compare the standard form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

A1.A-REI.D.12: : Graph the solutions to a linear inequality in two variables as a half-plane, excluding the boundary in the case of a strict inequality, and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Linear Inequalities in Two Variables

Linear Programming

Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview

Systems of Linear Inequalities (Slope-intercept form)

Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview

### A1.F: : Functions

A1.F-IF: : Interpreting Functions

A1.F-IF.A: : Understand the concept of a function and use function notation.

A1.F-IF.A.1: : Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview

Function Machines 2 (Functions, Tables, and Graphs)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

Function Machines 3 (Functions and Problem Solving)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview

Introduction to Functions

Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview

Linear Functions

Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

Parabolas

Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview

Point-Slope Form of a Line

Points, Lines, and Equations

Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

Standard Form of a Line

A1.F-IF.A.2: : Evaluate a function for inputs in the domain, and interpret statements that use function notation in terms of a context.

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

A1.F-IF.A.3: : Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

A1.F-IF.B: : Interpret functions that arise in applications in terms of the context.

A1.F-IF.B.4: : For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Absolute Value with Linear Functions

Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview

Cat and Mouse (Modeling with Linear Systems)

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview

Function Machines 3 (Functions and Problem Solving)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

General Form of a Rational Function

Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview

Graphs of Polynomial Functions

Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview

Linear Functions

Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

Points, Lines, and Equations

Quadratics in Factored Form

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

Roots of a Quadratic

Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

A1.F-IF.B.5: : Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

General Form of a Rational Function

Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview

Introduction to Functions

Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

Radical Functions

Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview

Rational Functions

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview

A1.F-IF.B.6: : Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Cat and Mouse (Modeling with Linear Systems)

Compound Interest

Distance-Time and Velocity-Time Graphs

Create a graph of a runner's position versus time and watch the runner run a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview

Exponential Functions

Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview

Point-Slope Form of a Line

Slope

Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

Translating and Scaling Functions

Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview

Zap It! Game

Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview

A1.F-IF.C: : Analyze functions using different representations.

A1.F-IF.C.7: : Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Absolute Value with Linear Functions

Addition and Subtraction of Functions

Explore the graphs of two polynomials and the graph of their sum or difference. Vary the coefficients in the polynomials and investigate how the graphs change in response. 5 Minute Preview

Exponential Functions

General Form of a Rational Function

Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview

Graphs of Polynomial Functions

Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview

Introduction to Exponential Functions

Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview

Linear Functions

Logarithmic Functions

*y* = *x* to compare the associated exponential function.
5 Minute Preview

Point-Slope Form of a Line

Points, Lines, and Equations

Polynomials and Linear Factors

Create a polynomial as a product of linear factors. Vary the values in the linear factors to see how their connection to the roots of the function. 5 Minute Preview

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Radical Functions

Roots of a Quadratic

Slope-Intercept Form of a Line

Standard Form of a Line

Translating and Scaling Functions

Zap It! Game

Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview

A1.F-IF.C.8: : Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

A1.F-IF.C.8a: : Use the process of factoring and completing the square of a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Factoring Special Products

Modeling the Factorization of *ax*^{2}+*bx*+*c*

Modeling the Factorization of *x*^{2}+*bx*+*c*

Quadratics in Factored Form

Quadratics in Vertex Form

Roots of a Quadratic

A1.F-IF.C.9: : Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Exponential Functions

General Form of a Rational Function

Graphs of Polynomial Functions

Introduction to Exponential Functions

Linear Functions

Logarithmic Functions

*y* = *x* to compare the associated exponential function.
5 Minute Preview

Quadratics in Factored Form

Quadratics in Polynomial Form

Quadratics in Vertex Form

Slope-Intercept Form of a Line

Translating and Scaling Functions

A1.F-BF: : Building Functions

A1.F-BF.A: : Build a function that models a relationship between two quantities.

A1.F-BF.A.1: : Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Arithmetic Sequences

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

Introduction to Exponential Functions

A1.F-BF.B: : Build new functions from existing functions.

A1.F-BF.B.3: : Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Absolute Value with Linear Functions

Exponential Functions

Introduction to Exponential Functions

Logarithmic Functions

*y* = *x* to compare the associated exponential function.
5 Minute Preview

Logarithmic Functions: Translating and Scaling

Vary the values in the equation of a logarithmic function and examine how the graph is translated or scaled. Connect these transformations with the domain of the function, and the asymptote in the graph. 5 Minute Preview

Quadratics in Vertex Form

Radical Functions

Rational Functions

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview

Translating and Scaling Functions

Translating and Scaling Sine and Cosine Functions

Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview

Translations

Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview

Zap It! Game

Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview

A1.F-LE: : Linear, Quadratic, and Exponential Models

A1.F-LE.A: : Construct and compare linear, quadratic, and exponential models and solve problems.

A1.F-LE.A.1: : Distinguish between situations that can be modeled with linear functions and with exponential functions.

A1.F-LE.A.1a: : Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

Compound Interest

Direct and Inverse Variation

Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview

Exponential Functions

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview

Introduction to Exponential Functions

Linear Functions

Slope-Intercept Form of a Line

A1.F-LE.A.1b: : Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

Arithmetic Sequences

Compound Interest

Direct and Inverse Variation

Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview

Linear Functions

Slope-Intercept Form of a Line

A1.F-LE.A.1c: : Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Compound Interest

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview

A1.F-LE.A.2: : Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or input/output pairs.

Absolute Value with Linear Functions

Arithmetic Sequences

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

Compound Interest

Exponential Functions

Function Machines 1 (Functions and Tables)

Function Machines 2 (Functions, Tables, and Graphs)

Function Machines 3 (Functions and Problem Solving)

Geometric Sequences

Introduction to Exponential Functions

Linear Functions

Logarithmic Functions

*y* = *x* to compare the associated exponential function.
5 Minute Preview

Point-Slope Form of a Line

Points, Lines, and Equations

Slope-Intercept Form of a Line

Standard Form of a Line

A1.F-LE.A.3: : Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.

Compound Interest

Exponential Functions

Introduction to Exponential Functions

A1.F-LE.B: : Interpret expressions for functions in terms of the situation they model.

A1.F-LE.B.5: : Interpret the parameters in a linear or exponential function with integer exponents utilizing real world context.

Arithmetic Sequences

Compound Interest

Exponential Growth and Decay

Explore the graph of the exponential growth or decay function. Vary the initial amount and the rate of growth or decay and investigate the changes to the graph. 5 Minute Preview

Introduction to Exponential Functions

### A1.S: : Statistics and Probability

A1.S-ID: : Summarize, represent, and interpret data on a single count or measurement variable.

A1.S-ID.A: : Summarize, represent, and interpret data on a single count or measurement variable.

A1.S-ID.A.1: : Represent real-value data with plots for the purpose of comparing two or more data sets.

Box-and-Whisker Plots

Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview

Histograms

Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview

Mean, Median, and Mode

Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview

Reaction Time 1 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview

A1.S-ID.A.2: : Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

Box-and-Whisker Plots

Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview

Describing Data Using Statistics

Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview

Mean, Median, and Mode

Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview

Reaction Time 1 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview

Real-Time Histogram

Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview

Sight vs. Sound Reactions

Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview

A1.S-ID.A.3: : Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of outliers if present.

Box-and-Whisker Plots

Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview

Describing Data Using Statistics

Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview

Mean, Median, and Mode

Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview

Reaction Time 1 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview

Reaction Time 2 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview

Real-Time Histogram

Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview

Stem-and-Leaf Plots

Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview

A1.S-ID.B: : Summarize, represent, and interpret data on two categorical and quantitative variables.

A1.S-ID.B.5: : Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data, including joint, marginal, and conditional relative frequencies. Recognize possible associations and trends in the data.

Histograms

Change the values in a data set and examine how the dynamic histogram changes in response. Adjust the interval size of the histogram and see how the shape of the histogram is affected. 5 Minute Preview

A1.S-ID.B.6: : Represent data on two quantitative variables on a scatter plot, and describe how the quantities are related.

A1.S-ID.B.6a: : Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Focus on linear models.

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview

Zap It! Game

A1.S-ID.B.6b: : Informally assess the fit of a function by plotting and analyzing residuals.

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview

A1.S-ID.C: : Interpret linear models.

A1.S-ID.C.7: : Interpret the slope as a rate of change and the constant term of a linear model in the context of the data.

Cat and Mouse (Modeling with Linear Systems)

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview

A1.S-ID.C.8: : Compute and interpret the correlation coefficient of a linear relationship.

Correlation

A1.S-ID.C.9: : Distinguish between correlation and causation.

Correlation

A1.S-CP: : Conditional Probability and the Rules of Probability

A1.S-CP.A: : Understand independence and conditional probability and use them to interpret data.

A1.S-CP.A.1: : Describe events as subsets of a sample space using characteristics of the outcomes, or as unions, intersections, or complements of other events.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

Probability Simulations

Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview

Theoretical and Experimental Probability

Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview

A1.S-CP.A.2: : Use the Multiplication Rule for independent events to understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

### A1.MP: : Standards for Mathematical Practices

A1.MP.1: : Make sense of problems and persevere in solving them.

Biconditional Statements

Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

Conditional Statements

Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

Estimating Population Size

Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview

Pattern Flip (Patterns)

In the Pattern Flip carnival game, you are shown a pattern of cards. The first cards are face-up so you can see the pattern, and the rest are face-down. Can you guess which animals are on the face-down cards? Use one of the preset patterns, or make your own custom pattern. Good luck! 5 Minute Preview

5.1.1: : Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, “Does this make sense?' to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.