Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • New Mexico Standards
  • Science: 7th Grade

New Mexico - Science: 7th Grade

Assessment Frameworks | Adopted: 2004

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

II: : Content of Science


II.I: : Understand the structure and properties of matter, the characteristics of energy, and the interactions between matter and energy.

II.I.I: : Know the forms and properties of matter and how matter interacts.

II.I.I.1: : Explain how matter is transferred from one organism to another and between organisms and their environment (e.g., consumption, the water cycle, the carbon cycle, the nitrogen cycle).

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo

II.I.I.2: : Know that the total amount of matter (mass) remains constant although its form, location, and properties may change (e.g., matter in the food web).

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

II.I.I.3: : Identify characteristics of radioactivity, including:

II.I.I.3.b: : release of energy

Screenshot of Heat Absorption

Heat Absorption

Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radiation

Radiation

Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview


Lesson Info
Launch Gizmo

II.I.II: : Explain the physical processes involved in the transfer, change, and conservation of energy.

II.I.II.1: : Know how various forms of energy are transformed through organisms and ecosystems, including:

II.I.II.1.a: : sunlight and photosynthesis

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Photosynthesis Lab

Photosynthesis Lab

Study photosynthesis in a variety of conditions. Oxygen production is used to measure the rate of photosynthesis. Light intensity, carbon dioxide levels, temperature, and wavelength of light can all be varied. Determine which conditions are ideal for photosynthesis, and understand how limiting factors affect oxygen production. 5 Minute Preview


Lesson Info
Launch Gizmo

II.I.III: : Describe and explain forces that produce motion in objects.

II.I.III.1: : Know that forces cause motion in living systems, including:

II.I.III.1.a: : the principle of a lever and how it gives mechanical advantage to a muscular/skeletal system to lift objects

Screenshot of Levers

Levers

Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II: : Understand the properties, structures, and processes of living things and the interdependence of living things and their environments.

II.II.I: : Explain the diverse structures and functions of living things and the complex relationships between living things and their environments.

II.II.I.PE: : Populations and Ecosystems

II.II.I.PE.1: : Identify the living and nonliving parts of an ecosystem and describe the relationships among these components.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.I.PE.2: : Explain biomes (i.e., aquatic, desert, rainforest, grasslands, tundra) and describe the New Mexico biome.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.I.PE.3: : Explain how individuals of species that exist together interact with their environment to create an ecosystem (e.g., populations, communities, niches, habitats, food webs).

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.I.PE.4: : Explain the conditions and resources needed to sustain life in specific ecosystems.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.I.PE.5: : Describe how the availability of resources and physical factors limit growth (e.g., quantity of light and water, range of temperature, composition of soil) and how the water, carbon, and nitrogen cycles contribute to the availability of those resources to support living systems.

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.I.BD: : Biodiversity

II.II.I.BD.6: : Understand how diverse species fill all niches in an ecosystem.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.I.BD.7: : Know how to classify organisms: domain, kingdom, phylum, class, order, family, genus, species.

Screenshot of Dichotomous Keys

Dichotomous Keys

Use dichotomous keys to identify and classify five types of organisms: California albatrosses, Canadian Rockies buttercups, Texas venomous snakes, Virginia evergreens, and Florida cartilagenous fishes. After you have classified every organism, try making your own dichotomous key! 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Human Evolution - Skull Analysis

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II: : Understand how traits are passed from one generation to the next and how species evolve.

II.II.II.R: : Reproduction

II.II.II.R.3: : Know that, in sexual reproduction, an egg and sperm unite to begin the development of a new individual.

Screenshot of Pollination: Flower to Fruit

Pollination: Flower to Fruit

Label a diagram that illustrates the anatomy of a flower, and understand the function of each structure. Compare the processes of self pollination and cross pollination, and explore how fertilization takes place in a flowering plant. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.H: : Heredity

II.II.II.H.5: : Understand that some characteristics are passed from parent to offspring as inherited traits and others are acquired from interactions with the environment.

Screenshot of Inheritance

Inheritance

Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.H.6: : Know that hereditary information is contained in genes that are located in chromosomes, including:

II.II.II.H.6.a: : determination of traits by genes

Screenshot of Human Karyotyping

Human Karyotyping

Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.H.6.b: : traits determined by one or many genes

Screenshot of Human Karyotyping

Human Karyotyping

Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.H.6.c: : more than one trait sometimes influenced by a single gene.

Screenshot of Human Karyotyping

Human Karyotyping

Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.BE: : Biological Evolution

II.II.II.BE.7: : Describe how typical traits may change from generation to generation due to environmental influences (e.g., color of skin, shape of eyes, camouflage, shape of beak).

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.BE.8: : Explain that diversity within a species is developed by gradual changes over many generations.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.BE.10: : Identify adaptations that favor the survival of organisms in their environments (e.g., camouflage, shape of beak).

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Natural Selection

Natural Selection

You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.BE.11: : Understand the process of natural selection.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Natural Selection

Natural Selection

You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.II.BE.13: : Know that the fossil record documents the appearance, diversification, and extinction of many life forms.

Screenshot of Human Evolution - Skull Analysis

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.III: : Understand the structure of organisms and the function of cells in living systems.

II.II.III.SO: : Structure of Organisms

II.II.III.SO.1: : Understand that organisms are composed of cells and identify unicellular and multicellular organisms.

Screenshot of Paramecium Homeostasis

Paramecium Homeostasis

Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.III.FC: : Function of Cells

II.II.III.FC.3: : Understand that many basic functions of organisms are carried out in cells, including:

II.II.III.FC.3.a: : growth and division to produce more cells (mitosis)

Screenshot of Cell Division

Cell Division

Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.III.FC.4: : Compare the structure and processes of plant cells and animal cells.

Screenshot of Cell Structure

Cell Structure

Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview


Lesson Info
Launch Gizmo

II.II.III.FC.5: : Describe how some cells respond to stimuli (e.g., light, heat, pressure, gravity).

Screenshot of Paramecium Homeostasis

Paramecium Homeostasis

Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview


Lesson Info
Launch Gizmo

II.III: : Understand the structure of Earth, the solar system, and the universe, the interconnections among them, and the processes and interactions of Earth's systems.

II.III.I: : Describe how the concepts of energy, matter, and force can be used to explain the observed behavior of the solar system, the universe, and their structures.

II.III.I.1: : Explain why Earth is unique in our solar system in its ability to support life.

Screenshot of Solar System Explorer

Solar System Explorer

Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified. 5 Minute Preview


Lesson Info
Launch Gizmo

II.III.II: : Describe the structure of Earth and its atmosphere and explain how energy, matter, and forces shape Earth's systems.

II.III.II.3: : Know that changes to ecosystems sometimes decrease the capacity of the environment to support some life forms and are difficult and/or costly to remediate.

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 9/22/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap