- Home
- Find Gizmos
- Browse by Standard (USA)
- Virginia Standards
- Mathematics: High School
Colorado - Mathematics: High School
21st Century Skills and Readiness Competencies | Adopted: 2010
S.1: : Number Sense, Properties, and Operations
S.1.GLE.1: : The complex number system includes real numbers and imaginary numbers
S.1.GLE.1.IQ: : Inquiry Questions:
S.1.GLE.1.IQ.2: : Are there more complex numbers than real numbers?
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
S.1.GLE.1.IQ.4: : Why are complex numbers important?
Points in the Complex Plane
Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
S.1.GLE.1.N: : Nature of Mathematics:
S.1.GLE.1.N.2: : Mathematics involves making and testing conjectures, generalizing results, and making connections among ideas, strategies, and solutions.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Geometric Sequences
Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview
Unit Conversions
Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems. 5 Minute Preview
S.1.GLE.2: : Quantitative reasoning is used to make sense of quantities and their relationships in problem situations
S.1.GLE.2.RA: : Relevance and Application:
S.1.GLE.2.RA.2: : The reading, interpreting, and writing of numbers in scientific notation with and without technology is used extensively in the natural sciences such as representing large or small quantities such as speed of light, distance to other planets, distance between stars, the diameter of a cell, and size of a micro?organism.
Unit Conversions
Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems. 5 Minute Preview
S.1.GLE.2.RA.3: : Fluency with computation and estimation allows individuals to analyze aspects of personal finance, such as calculating a monthly budget, estimating the amount left in a checking account, making informed purchase decisions, and computing a probable paycheck given a wage (or salary), tax tables, and other deduction schedules.
Household Energy Usage
Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact. 5 Minute Preview
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
S.1.GLE.2.N: : Nature of Mathematics:
S.1.GLE.2.N.1: : Using mathematics to solve a problem requires choosing what mathematics to use; making simplifying assumptions, estimates, or approximations; computing; and checking to see whether the solution makes sense.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.1.GLE.2.N.2: : Mathematicians reason abstractly and quantitatively.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Conditional Statements
Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.2: : Patterns, Functions, and Algebraic Structures
S.2.GLE.1: : Functions model situations where one quantity determines another and can be represented algebraically, graphically, and using tables
S.2.GLE.1.IQ: : Inquiry Questions:
S.2.GLE.1.IQ.1: : Why are relations and functions represented in multiple ways?
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
S.2.GLE.1.IQ.2: : How can a table, graph, and function notation be used to explain how one function family is different from and/or similar to another?
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Radical Functions
Compare the graph of a radical function to its equation. Vary the terms of the equation. Explore how the graph is translated and stretched by the changes to the equation. 5 Minute Preview
S.2.GLE.1.IQ.3: : What is an inverse?
Conditional Statements
Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Direct and Inverse Variation
Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
Solving Algebraic Equations I
Are there times when you wish you could escape from everyone and just be alone? Meet our variable friend, a real loner who doesn't like coefficients and neighboring terms. Learn how to use inverses to isolate a variable – a foundational skill for solving algebraic equations. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
S.2.GLE.1.IQ.4: : How is ?inverse function? most likely related to addition and subtraction being inverse operations and to multiplication and division being inverse operations?
Logarithmic Functions
Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line y = x to compare the associated exponential function. 5 Minute Preview
S.2.GLE.1.IQ.6: : How could you visualize a function with four variables, such as x² + y² + z² + w² = 1?
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
Points, Lines, and Equations
Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview
S.2.GLE.1.IQ.8: : How do symbolic transformations affect an equation, inequality, or expression?
Absolute Value with Linear Functions
Compare the graph of a linear function, the graph of an absolute-value function, and the graphs of their translations. Vary the coefficients and constants in the functions and investigate how the graphs change in response. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
Translating and Scaling Functions
Vary the coefficients in the equation of a function and examine how the graph of the function is translated or scaled. Select different functions to translate and scale, and determine what they have in common. 5 Minute Preview
Translating and Scaling Sine and Cosine Functions
Experiment with the graph of a sine or cosine function. Explore how changing the values in the equation can translate or scale the graph of the function. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
S.2.GLE.1.RA: : Relevance and Application:
S.2.GLE.1.RA.1: : Knowledge of how to interpret rate of change of a function allows investigation of rate of return and time on the value of investments.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Slope
Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview
S.2.GLE.1.RA.3: : The ability to analyze a function for the intercepts, asymptotes, domain, range, and local and global behavior provides insights into the situations modeled by the function. For example, epidemiologists could compare the rate of flu infection among people who received flu shots to the rate of flu infection among people who did not receive a flu shot to gain insight into the effectiveness of the flu shot.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
Introduction to Exponential Functions
Explore the graph of the exponential function. Vary the initial amount and base of the function. Investigate the changes to the graph. 5 Minute Preview
Rational Functions
Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
S.2.GLE.1.RA.6: : Comprehension of slope, intercepts, and common forms of linear equations allows easy retrieval of information from linear models such as rate of growth or decrease, an initial charge for services, speed of an object, or the beginning balance of an account.
Cat and Mouse (Modeling with Linear Systems)
Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview
Slope-Intercept Form of a Line
Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview
S.2.GLE.1.N: : Nature of Mathematics:
S.2.GLE.1.N.1: : Mathematicians use multiple representations of functions to explore the properties of functions and the properties of families of functions.
Introduction to Functions
Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview
S.2.GLE.1.N.2: : Mathematicians model with mathematics.
Determining a Spring Constant
Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.2.GLE.2: : Quantitative relationships in the real world can be modeled and solved using functions
S.2.GLE.2.IQ: : Inquiry Questions:
S.2.GLE.2.IQ.2: : What phenomena can be modeled with particular functions?
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
S.2.GLE.2.IQ.3: : Which financial applications can be modeled with exponential functions? Linear functions?
Compound Interest
Explore compound interest in-depth, from compounded annually to compounded continuously. In addition, compare the END POINTS graph, with dots that fit an exponential curve, to the ALL TIME graph, which has a more step-like appearance. 5 Minute Preview
Exponential Functions
Explore the graph of an exponential function. Vary the coefficient and base of the function and investigate the changes to the graph of the function. 5 Minute Preview
S.2.GLE.2.IQ.4: : What elementary function or functions best represent a given scatter plot of two-variable data?
Zap It! Game
Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview
S.2.GLE.2.RA: : Relevance and Application:
S.2.GLE.2.RA.1: : The understanding of the qualitative behavior of functions allows interpretation of the qualitative behavior of systems modeled by functions such as time-distance, population growth, decay, heat transfer, and temperature of the ocean versus depth.
General Form of a Rational Function
Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview
S.2.GLE.2.RA.2: : The knowledge of how functions model real-world phenomena allows exploration and improved understanding of complex systems such as how population growth may affect the environment, how interest rates or inflation affect a personal budget, how stopping distance is related to reaction time and velocity, and how volume and temperature of a gas are related.
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
S.2.GLE.2.N: : Nature of Mathematics:
S.2.GLE.2.N.1: : Mathematicians use their knowledge of functions to create accurate models of complex systems.
Linear Functions
Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview
S.2.GLE.2.N.3: : Mathematicians reason abstractly and quantitatively.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Conditional Statements
Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.2.GLE.2.N.4: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.2.GLE.2.N.5: : Mathematicians model with mathematics.
Determining a Spring Constant
Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.2.GLE.3: : Expressions can be represented in multiple, equivalent forms
S.2.GLE.3.IQ: : Inquiry Questions:
S.2.GLE.3.IQ.1: : When is it appropriate to simplify expressions?
Dividing Exponential Expressions
Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Equivalent Algebraic Expressions I
Grumpy’s Restaurant is now hiring! As a new chef at this underwater bistro, you’ll learn the basics of manipulating algebraic expressions. Learn how to make equivalent expressions using the Commutative and Associative properties, how to handle pesky subtraction and division, and how to identify equivalent and non-equivalent expressions. 5 Minute Preview
Equivalent Algebraic Expressions II
Continue your meteoric rise in the undersea culinary world in this follow-up to Equivalent Algebraic Expressions I. Make equivalent expressions by using the distributive property forwards and backwards, sort expressions by equivalence, and personally assist Chef Grumpy himself with a project that will bring him (and maybe you) fame and fortune. 5 Minute Preview
Multiplying Exponential Expressions
Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Operations with Radical Expressions
Identify the correct steps to complete operations with a radical expression. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview
Simplifying Algebraic Expressions I
Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview
Simplifying Algebraic Expressions II
Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview
S.2.GLE.3.IQ.2: : The ancient Greeks multiplied binomials and found the roots of quadratic equations without algebraic notation. How can this be done?
Quadratics in Factored Form
Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview
Quadratics in Polynomial Form
Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview
Quadratics in Vertex Form
Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview
Roots of a Quadratic
Find the root of a quadratic using its graph or the quadratic formula. Explore the graph of the roots and the point of symmetry in the complex plane. Compare the axis of symmetry and graph of the quadratic in the real plane. 5 Minute Preview
S.2.GLE.3.RA: : Relevance and Application:
S.2.GLE.3.RA.2: : The manipulation of expressions and solving formulas are techniques used to solve problems in geometry such as finding the area of a circle, determining the volume of a sphere, calculating the surface area of a prism, and applying the Pythagorean Theorem.
Area of Triangles
Use a dynamic triangle to explore the area of a triangle. With the help of an animation, see that any triangle is always half of a parallelogram (with the same base and height). Likewise, a similar animation shows the connection between parallelograms and rectangles. 5 Minute Preview
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Circumference and Area of Circles
Resize a circle and compare its radius, circumference, and area. 5 Minute Preview
Cosine Function
Compare the graph of the cosine function with the graph of the angle on the unit circle. Drag a point along the cosine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Distance Formula
Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview
Pythagorean Theorem
Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview
Pythagorean Theorem with a Geoboard
Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview
Sine Function
Compare the graph of the sine function with the graph of the angle on the unit circle. Drag a point along the sine curve and see the corresponding angle on the unit circle. 5 Minute Preview
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
Surface and Lateral Areas of Pyramids and Cones
Vary the dimensions of a pyramid or cone and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
Tangent Function
Compare the graph of the tangent function with the graph of the angle on the unit circle. Drag a point along the tangent curve and see the corresponding angle on the unit circle. 5 Minute Preview
S.2.GLE.3.N: : Nature of Mathematics:
S.2.GLE.3.N.1: : Mathematicians abstract a problem by representing it as an equation. They travel between the concrete problem and the abstraction to gain insights and find solutions.
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
S.2.GLE.3.N.2: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.2.GLE.3.N.3: : Mathematicians model with mathematics.
Determining a Spring Constant
Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.2.GLE.4: : Solutions to equations, inequalities and systems of equations are found using a variety of tools
S.2.GLE.4.IQ: : Inquiry Questions:
S.2.GLE.4.IQ.1: : What are some similarities in solving all types of equations?
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
S.2.GLE.4.IQ.2: : Why do different types of equations require different types of solution processes?
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Modeling One-Step Equations
Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
S.2.GLE.4.IQ.4: : How are order of operations and operational relationships important when solving multivariable equations?
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
S.2.GLE.4.RA: : Relevance and Application:
S.2.GLE.4.RA.1: : Linear programming allows representation of the constraints in a real-world situation identification of a feasible region and determination of the maximum or minimum value such as to optimize profit, or to minimize expense.
Linear Programming
Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview
Systems of Linear Inequalities (Slope-intercept form)
Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview
S.2.GLE.4.RA.2: : Effective use of graphing technology helps to find solutions to equations or systems of equations.
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
Solving Equations by Graphing Each Side
Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Linear Systems (Matrices and Special Solutions)
Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (x, y) point to be a solution of an equation, or of a system of equations. 5 Minute Preview
Solving Linear Systems (Standard Form)
Solve systems of linear equations, written in standard form. Explore what it means to solve systems algebraically (with substitution or elimination) and graphically. Also, use a draggable green point to see what it means when (x, y) values are solutions of an equation, or of a system of equations. 5 Minute Preview
S.2.GLE.4.N: : Nature of Mathematics:
S.2.GLE.4.N.3: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.3: : Data Analysis, Statistics, and Probability
S.3.GLE.1: : Visual displays and summary statistics condense the information in data sets into usable knowledge
S.3.GLE.1.IQ: : Inquiry Questions:
S.3.GLE.1.IQ.1: : What makes data meaningful or actionable?
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
S.3.GLE.1.RA: : Relevance and Application:
S.3.GLE.1.RA.1: : Facility with data organization, summary, and display allows the sharing of data efficiently and collaboratively to answer important questions such as is the climate changing, how do people think about ballot initiatives in the next election, or is there a connection between cancers in a community?
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Describing Data Using Statistics
Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
S.3.GLE.1.N: : Nature of Mathematics:
S.3.GLE.1.N.1: : Mathematicians create visual and numerical representations of data to reveal relationships and meaning hidden in the raw data.
Box-and-Whisker Plots
Construct a box-and-whisker plot to match a line plots, and construct a line plot to match a box-and-whisker plots. Manipulate the line plot and examine how the box-and-whisker plot changes. Then manipulate the box-and-whisker plot and examine how the line plot changes. 5 Minute Preview
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Stem-and-Leaf Plots
Build a data set and compare the line plot of the data set to the stem-and-leaf plot. 5 Minute Preview
S.3.GLE.1.N.2: : Mathematicians reason abstractly and quantitatively.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Conditional Statements
Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.3.GLE.1.N.3: : Mathematicians model with mathematics.
Determining a Spring Constant
Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.3.GLE.2: : Statistical methods take variability into account supporting informed decisions making through quantitative studies designed to answer specific questions
S.3.GLE.2.IQ: : Inquiry Questions:
S.3.GLE.2.IQ.3: : When should sampling be used? When is sampling better than using a census?
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
S.3.GLE.2.IQ.4: : Can the practical significance of a given study matter more than statistical significance? Why is it important to know the difference?
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
Populations and Samples
Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview
S.3.GLE.2.IQ.5: : Why is the margin of error in a study important?
Polling: City
Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview
Polling: Neighborhood
Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview
S.3.GLE.2.N: : Nature of Mathematics:
S.3.GLE.2.N.2: : Mathematicians are skeptical of apparent trends. They use their understanding of randomness to distinguish meaningful trends from random occurrences.
Correlation
Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview
Solving Using Trend Lines
Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview
Trends in Scatter Plots
Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview
S.3.GLE.2.N.3: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.3.GLE.2.N.4: : Mathematicians model with mathematics.
Determining a Spring Constant
Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.3.GLE.3: : Probability models outcomes for situations in which there is inherent randomness
S.3.GLE.3.IQ: : Inquiry Questions:
S.3.GLE.3.IQ.1: : Can probability be used to model all types of uncertain situations? For example, can the probability that the 50th president of the United States will be female be determined?
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
S.3.GLE.3.IQ.2: : How and why are simulations used to determine probability when the theoretical probability is unknown?
Geometric Probability
Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview
Independent and Dependent Events
Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
S.3.GLE.3.RA: : Relevance and Application:
S.3.GLE.3.RA.1: : Comprehension of probability allows informed decision-making, such as whether the cost of insurance is less than the expected cost of illness, when the deductible on car insurance is optimal, whether gambling pays in the long run, or whether an extended warranty justifies the cost.
Household Energy Usage
Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact. 5 Minute Preview
Percent of Change
Apply markups and discounts using interactive "percent rulers." Improve number sense for percents with this dynamic, visual tool. Reinforce the original cost (or original price) as the baseline for percent calculations. 5 Minute Preview
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
S.3.GLE.3.RA.2: : Probability is used in a wide variety of disciplines including physics, biology, engineering, finance, and law. For example, employment discrimination cases often present probability calculations to support a claim.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.3.GLE.3.N: : Nature of Mathematics:
S.3.GLE.3.N.2: : Mathematicians explore randomness and chance through probability.
Probability Simulations
Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
Theoretical and Experimental Probability
Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview
S.3.GLE.3.N.3: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.3.GLE.3.N.4: : Mathematicians model with mathematics.
Determining a Spring Constant
Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.4: : Shape, Dimension, and Geometric Relationships
S.4.GLE.1: : Objects in the plane can be transformed, and those transformations can be described and analyzed mathematically
S.4.GLE.1.IQ: : Inquiry Questions:
S.4.GLE.1.IQ.3: : What does it mean for two things to be the same? Are there different degrees of "sameness?"
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Solving Algebraic Equations II
Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
Using Algebraic Equations
Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview
S.4.GLE.1.RA: : Relevance and Application:
S.4.GLE.1.RA.1: : Comprehension of transformations aids with innovation and creation in the areas of computer graphics and animation.
Rotations, Reflections, and Translations
Rotate, reflect, and translate a figure in the plane. Compare the translated figure to the original figure. 5 Minute Preview
Translations
Translate a figure horizontally and vertically in the plane and examine the matrix representation of the translation. 5 Minute Preview
S.4.GLE.1.N: : Nature of Mathematics:
S.4.GLE.1.N.2: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.4.GLE.2: : Concepts of similarity are foundational to geometry and its applications
S.4.GLE.2.IQ: : Inquiry Questions:
S.4.GLE.2.IQ.4: : Do perfect circles naturally occur in the physical world?
Circles
Compare the graph of a circle with its equation. Vary the terms in the equation and explore how the circle is translated and scaled in response. 5 Minute Preview
S.4.GLE.2.N: : Nature of Mathematics:
S.4.GLE.2.N.2: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.4.GLE.3: : Objects in the plane can be described and analyzed algebraically
S.4.GLE.3.IQ: : Inquiry Questions:
S.4.GLE.3.IQ.1: : What does it mean for two lines to be parallel?
Constructing Congruent Segments and Angles
Construct congruent segments and angles using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Constructing Parallel and Perpendicular Lines
Construct parallel and perpendicular lines using a straightedge and compass. Use step-by-step explanations and feedback to develop understanding of the construction. 5 Minute Preview
Parallel, Intersecting, and Skew Lines
Explore the properties of intersecting, parallel, and skew lines as well as lines in the plane. Rotate the plane and lines in three-dimensional space to ensure a full understanding of these objects. 5 Minute Preview
S.4.GLE.3.RA: : Relevance and Application:
S.4.GLE.3.RA.1: : Knowledge of right triangle trigonometry allows modeling and application of angle and distance relationships such as surveying land boundaries, shadow problems, angles in a truss, and the design of structures.
Sine, Cosine, and Tangent Ratios
Reshape and resize a right triangle and examine how the sine of angle A, the cosine of angle A, and the tangent of angle A change. 5 Minute Preview
S.4.GLE.3.N: : Nature of Mathematics:
S.4.GLE.3.N.2: : Mathematicians make sense of problems and persevere in solving them.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.4.GLE.3.N.3: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.4.GLE.4: : Attributes of two- and three-dimensional objects are measurable and can be quantified
S.4.GLE.4.IQ: : Inquiry Questions:
S.4.GLE.4.IQ.1: : How might surface area and volume be used to explain biological differences in animals?
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
S.4.GLE.4.IQ.3: : How can surface area be minimized while maximizing volume?
Surface and Lateral Areas of Prisms and Cylinders
Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview
S.4.GLE.4.RA: : Relevance and Application:
S.4.GLE.4.RA.1: : Understanding areas and volume enables design and building. For example, a container that maximizes volume and minimizes surface area will reduce costs and increase efficiency. Understanding area helps to decorate a room, or create a blueprint for a new building.
Area of Parallelograms
Examine and manipulate a parallelogram and find its area. Explore the relationship between the area of a parallelogram and the area of a rectangle using an animation. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
Prisms and Cylinders
Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview
S.4.GLE.4.N: : Nature of Mathematics:
S.4.GLE.4.N.1: : Mathematicians use geometry to model the physical world. Studying properties and relationships of geometric objects provides insights in to the physical world that would otherwise be hidden.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.4.GLE.4.N.2: : Mathematicians make sense of problems and persevere in solving them.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.4.GLE.4.N.3: : Mathematicians construct viable arguments and critique the reasoning of others.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
S.4.GLE.4.N.4: : Mathematicians model with mathematics.
Determining a Spring Constant
Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.4.GLE.5: : Objects in the real world can be modeled using geometric concepts
S.4.GLE.5.N: : Nature of Mathematics:
S.4.GLE.5.N.2: : Mathematicians make sense of problems and persevere in solving them.
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview
S.4.GLE.5.N.3: : Mathematicians reason abstractly and quantitatively.
Biconditional Statements
Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Conditional Statements
Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview
Correlation last revised: 9/22/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote