Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (CAN)
  • Saskatchewan Standards
  • Science: 7th Grade

Saskatchewan - Science: 7th Grade

Saskatchewan Foundational and Learning Objective | Adopted: 2009

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.

IE7: : Interactions within Ecosystems


IE7.2: : Observe, illustrate, and analyze living organisms within local ecosystems as part of interconnected food webs, populations, and communities.

IE7.2.b: : Provide examples of ecosystems of varying sizes and locations, including their biotic and abiotic components.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.2.c: : Conduct a field study to observe, record (using sketches, notes, tables, photographs, and/or video recordings), and identify biotic and abiotic components of a local ecosystem.

Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.2.e: : Examine the biotic and abiotic components of distant ecosystems using photographs, videos, or online resources.

Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.2.g: : Compile and display ecological data to illustrate the various interactions that occur among biotic and abiotic components of ecosystems.

Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.2.h: : Identify strengths and weaknesses of different methods of collecting and displaying ecological data (e.g., compare field observations of an ecosystem with observations from a video or television program, compare a food chain with a food web).

Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.2.i: : Classify organisms in a variety of ecosystems as producers, consumers, or decomposers and further classify consumers as herbivores, carnivores, or omnivores.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.2.j: : Interpret interdependence within natural systems by constructing food chains and food webs to illustrate the interactions among producers, consumers, and decomposers in a particular ecosystem.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Prairie Ecosystem

Prairie Ecosystem

Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.2.k: : Construct a classification key, using appropriate scientific terminology, which will enable classmates to differentiate between producers, consumers, and decomposers.

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.3: : Evaluate biogeochemical cycles (water, carbon, and nitrogen) as representations of energy flow and the cycling of matter through ecosystems.

IE7.3.b: : Model the carbon, nitrogen, and water cycles to illustrate how matter cycles through ecosystems.

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Cycle

Water Cycle

Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.3.c: : Analyze the strengths and limitations of models in science generally, and then apply these criteria to evaluate the efficacy of a student model of a biogeochemical cycle.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.3.d: : Explain the role of decomposers in recycling matter in an ecosystem.

Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.3.e: : Describe examples of how scientists collect evidence, search for patterns and relationships in data, and propose explanations to further the development of scientific knowledge about energy and matter flow in ecosystems.

Screenshot of Carbon Cycle

Carbon Cycle

Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.3.f: : Design and conduct an experiment to investigate the conditions essential for the growth of plants (e.g., determine whether nutrients in soil are sufficient to support plant growth, determine the influence of sunlight or other forms of light on plant growth).

Screenshot of Growing Plants

Growing Plants

Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Seed Germination

Seed Germination

Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.3.h: : Describe how energy passes through ecosystems during the processes of photosynthesis and cellular respiration.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.3.i: : Identify and evaluate potential impacts on energy flow and the cycling of matter by the removal of one or more living organisms from a specific ecosystem.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.4: : Analyze how ecosystems change in response to natural and human influences, and propose actions to reduce the impact of human behaviour on a specific ecosystem.

IE7.4.c: : Predict what a specific ecosystem (e.g., clear-cut forest, abandoned sports field, abandoned farm yard, abandoned rail line, ditch, driveway, or sidewalk) will look like in the future (e.g., 5, 10, and 25 years) based on characteristics of the area and long-term changes observed in similar ecosystems.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.4.d: : Identify and refine questions and problems related to the effects of natural or human influences on a particular ecosystem.

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Pollution

Water Pollution

Get to know the four main types of pollution present in the environment, and then look at a variety of real-world examples as you try to guess what type of pollution is represented by each situation. All of the real-world situations can be viewed every day in different parts of the world. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.4.e: : Select and synthesize information from various sources to develop a response to specific questions related to natural or human influences on a particular ecosystem.

Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

IE7.4.f: : Propose a course of action or defend a given position on a local ecological issue or problem related to natural or human influences on a particular ecosystem, taking into account scientific, societal, technological, and environmental factors.

Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

MS7: : Mixtures and Solutions


MS7.1: : Distinguish between pure substances and mixtures (mechanical mixtures and solutions) using the particle model of matter.

MS7.1.a: : Examine a variety of objects and materials, and record qualitative (e.g., colour, texture, and state of matter) and quantitative (e.g., density, melting point, and freezing point) physical properties of those objects in a chart or data table.

Screenshot of Color Absorption

Color Absorption

Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Density Experiment: Slice and Dice

Density Experiment: Slice and Dice

Drop a chunk of material in a beaker of water and observe whether it sinks or floats. Cut the chunk into smaller pieces of any size, and observe what happens as they are dropped in the beaker. The mass and volume of each chunk can be measured to gain a clear understanding of density and buoyancy. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Density Laboratory

Density Laboratory

With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Absorption

Heat Absorption

Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mineral Identification

Mineral Identification

Observe and measure the properties of a mineral sample, and then use a key to identify the mineral. Students can observe the color, luster, shape, density, hardness, streak, and reaction to acid for each mineral. There are 26 mineral samples to identify. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7: : Heat and Temperature


HT7.1: : Assess the impact of past and current heating and cooling technologies related to food, clothing, and shelter on self, society, and the environment.

HT7.1.b: : Communicate questions, ideas, intentions, plans, and results of inquiries related to heat transmission using lists, notes in point form, sentences, data tables, graphs, drawings, oral language, and other means.

Screenshot of Graphing Skills

Graphing Skills

Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Absorption

Heat Absorption

Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Identifying Nutrients

Identifying Nutrients

Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radiation

Radiation

Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.1.d: : Compare, in qualitative terms, the heat capacities of some common materials, including water, and explain how heat capacity influences choices of materials used in the development of technologies related to clothing, food, and shelter.

Screenshot of Heat Absorption

Heat Absorption

Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.2: : Explain how understanding differences between states of matter and the effect of heat on changes in state provide evidence for the particle theory.

HT7.2.c: : Construct and label a heating curve for water, using student-collected data, indicating states of matter and changes of state.

Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.2.d: : Create a visual or dramatic representation to explain changes of state of matter (e.g., melting, freezing, evaporation, condensation, and sublimation) according to the particle model of matter.

Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.2.e: : Choose appropriate instruments (e.g. alcohol thermometer, temperature probe, and thermocouple) and use them safely, effectively, and accurately for collecting temperature data when investigating states of matter and changes of state.

Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.2.g: : Distinguish between heat and temperature using the concept of kinetic energy and the particle model of matter.

Screenshot of Energy Conversion in a System

Energy Conversion in a System

A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Temperature and Particle Motion

Temperature and Particle Motion

Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.2.h: : Explain how evidence gathered while investigating states of matter and changes in states of matter supports or refutes the particle theory of matter.

Screenshot of Phases of Water

Phases of Water

Heat or cool a container of water and observe the phase changes that take place. Use a magnifying glass to observe water molecules as a solid, liquid, or gas. Compare the volumes of the three phases of water. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.3: : Investigate principles and applications of heat transfer via the processes of conduction, convection, and radiation.

HT7.3.a: : Demonstrate and explain how heat is transferred by the processes of conduction, convection, and radiation in solids, liquids, and gases.

Screenshot of Conduction and Convection

Conduction and Convection

Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Radiation

Radiation

Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.3.b: : Construct a visual or dramatic representation of heat transfer via conduction in a solid.

Screenshot of Conduction and Convection

Conduction and Convection

Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.3.d: : Assess the impacts on self, society, and the environment, of conduction, convection, and radiation in the natural and constructed world (e.g., heating over cities, temperature layers in lakes, thunderstorms, radiant heaters, refrigerators, and convection currents in air or water).

Screenshot of Conduction and Convection

Conduction and Convection

Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.3.e: : Evaluate applications of technologies designed to enhance or restrict the transfer of heat energy via conduction, convection, or radiation (e.g., metal frying pans, radiant heaters, home insulation, ovens, convection ovens, thermoses, winter parkas, and heat exchangers) using student-developed criteria.

Screenshot of Radiation

Radiation

Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview


Lesson Info
Launch Gizmo

HT7.3.f: : Design and carry out an experiment to determine differences in the ability of various surfaces to absorb and reflect radiant heat.

Screenshot of Heat Absorption

Heat Absorption

Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7: : Earthâ??s Crust and Resources


EC7.1: : Analyze societal and environmental impacts of historical and current catastrophic geological events, and scientific understanding of movements and forces within Earthâ??s crust.

EC7.1.a: : Trace the development of plate tectonics theory as an explanation for movement of Earthâ??s lithosphere in light of new geological evidence, including knowledge of tectonic plates and movement at plate boundaries.

Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.1.b: : Provide examples of past theories and ideas, including cultural mythology, that explain geological phenomena such as volcanic activity, earthquakes, and mountain building.

Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.1.d: : Create models or simulations of the processes of mountain formation and the folding and faulting of Earthâ??s surface, including movements at diverging, converging, and transform plate boundaries.

Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.1.g: : Organize data on the geographical and chronological distribution of earthquakes, tsunamis, and volcanic eruptions to determine patterns and trends in data and relationships among variables.

Screenshot of Earthquakes 1 - Recording Station

Earthquakes 1 - Recording Station

Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Plate Tectonics

Plate Tectonics

Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.2: : Identify locations and processes used to extract Earthâ??s geological resources and examine the impacts of those locations and processes on society and the environment.

EC7.2.c: : Classify rocks and minerals based on physical properties such as colour, hardness, cleavage, lustre, and streak.

Screenshot of Mineral Identification

Mineral Identification

Observe and measure the properties of a mineral sample, and then use a key to identify the mineral. Students can observe the color, luster, shape, density, hardness, streak, and reaction to acid for each mineral. There are 26 mineral samples to identify. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.3: : Investigate the characteristics and formation of the surface geology of Saskatchewan, including soil, and identify correlations between the surface geology and past, present, and possible future land uses.

EC7.3.a: : Model the processes of formation of the three major types of rocks: sedimentary, igneous, and metamorphic.

Screenshot of Rock Classification

Rock Classification

Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.3.c: : Construct a visual representation of the rock cycle (e.g., formation, weathering, sedimentation, and reformation) and relate this representation to the surface geology of Saskatchewan and Canada.

Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.3.d: : Develop and use a classification key for rocks based on physical characteristics and method of formation.

Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.3.e: : Describe examples of mechanical and chemical weathering of rocks.

Screenshot of Rock Cycle

Rock Cycle

Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview


Lesson Info
Launch Gizmo

EC7.3.l: : Assess environmental and economic impacts of past and current land use practices in Saskatchewan (e.g., agriculture, urban development, recreation, and road construction), and describe intended and unintended consequences of those practices on self, society, and the environment, including soil degradation.

Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap