- Home
- Find Gizmos
- Browse by Core Curriculum
- Locally Developed Textbooks
- Gwinnett, GA: Physics (2018)

# Gwinnett, GA: Physics (2018)

### 1: obtain, evaluate, and communicate information about the relationship between distance, displacement, speed, velocity and acceleration as functions of time for one-dimensional motion

1.a: Calculate average velocity, instantaneous velocity, and acceleration in a given frame of reference.

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview

Distance-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview

Force and Fan Carts

Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview

Golf Range

Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview

Measuring Motion

Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest? 5 Minute Preview

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview

1.b: Analyze and interpret data to explain the relationships between, position, velocity, and acceleration using position-time graphs and velocity-time graphs.

1.b.b1: Calculate the slope of a position-time graph and velocity-time graph in order to describe motion of an object.

Distance-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview

Inclined Plane - Rolling Objects

Observe and compare objects of different shapes as they roll or slide down an inclined plane. Compare the percentages of translational and rotational kinetic energy for each object, and see how this affects how quickly each object moves. The slope of each ramp can be adjusted, and a variety of materials can be used for the objects and ramps. 5 Minute Preview

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview

1.b.b2: Use positive and negative signs to describe the vector nature of physical quantities.

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview

1.b.b3: Compare and contrast scalar and vector quantities and give examples of each.

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview

1.b.b4: Honors/Accelerated Extension: Calculate the areas of velocity-time and acceleration-time graphs to describe the displacement and velocity of an object.

Distance-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview

Inclined Plane - Rolling Objects

Observe and compare objects of different shapes as they roll or slide down an inclined plane. Compare the percentages of translational and rotational kinetic energy for each object, and see how this affects how quickly each object moves. The slope of each ramp can be adjusted, and a variety of materials can be used for the objects and ramps. 5 Minute Preview

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview

Roller Coaster Physics

Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview

1.c: Apply appropriate equations for uniformly accelerated motion to solve problems.

1.c.c1: Plan and carry out an investigation of one-dimensional (horizontal and vertical) motion to calculate average and instantaneous speed, velocity and acceleration.

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview

Distance-Time Graphs - Metric

Distance-Time and Velocity-Time Graphs - Metric

Fan Cart Physics

Golf Range

Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview

Measuring Motion

Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest? 5 Minute Preview

Roller Coaster Physics

1.c.c2: Investigate and explain that free fall acceleration is independent of mass.

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview

### 2: obtain, evaluate, and communicate information about the relationship between distance, displacement, speed, velocity and acceleration as functions of time for two-dimensional motion

2.a: Use vector diagrams to show magnitude and direction and to show the addition of parallel and perpendicular vectors.

2.a.a1: Use mathematical methods for vector addition to solve problems for vectors that are on the same line and perpendicular to each other.

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview

2.b: Analyze and interpret data of two-dimensional motion with constant acceleration.

2.b.b1: Resolve position, velocity, or acceleration vectors into components. (x and y, horizontal and vertical)

Vectors

2.b.b2: Calculate range and time in the air for a horizontally launched projectile. (no air resistance)

Feed the Monkey (Projectile Motion)

Fire a banana cannon at a monkey in a tree. The monkey drops from the tree at the moment the banana is fired from the cannon. Determine where to aim the cannon so the monkey catches the banana. The position of the cannon, launch angle and initial velocity of the banana can be varied. Students can observe the velocity vectors and the paths of the monkey and banana. 5 Minute Preview

Golf Range

Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview

Gravity Pitch

Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview

2.b.b3: Determine the acceleration and velocity at the top of the parabolic path of a projectile.

Feed the Monkey (Projectile Motion)

Fire a banana cannon at a monkey in a tree. The monkey drops from the tree at the moment the banana is fired from the cannon. Determine where to aim the cannon so the monkey catches the banana. The position of the cannon, launch angle and initial velocity of the banana can be varied. Students can observe the velocity vectors and the paths of the monkey and banana. 5 Minute Preview

Golf Range

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview

2.b.b4: Explain the independence of vertical and horizontal motion of a projectile along the trajectory. (conceptually explain launch angle, velocity and acceleration at all points)

Feed the Monkey (Projectile Motion)

Fire a banana cannon at a monkey in a tree. The monkey drops from the tree at the moment the banana is fired from the cannon. Determine where to aim the cannon so the monkey catches the banana. The position of the cannon, launch angle and initial velocity of the banana can be varied. Students can observe the velocity vectors and the paths of the monkey and banana. 5 Minute Preview

Golf Range

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview

2.b.b5: Plan and execute an experiment to investigate the projectile motion of an object by collecting and analyzing data using kinematic equations.

Fan Cart Physics

Feed the Monkey (Projectile Motion)

Force and Fan Carts

Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview

Golf Range

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview

2.b.b6: Predict mathematically and describe how changes to initial conditions (height and horizontal velocity) affect the time of flight and range for horizontal projectiles.

Feed the Monkey (Projectile Motion)

Golf Range

Gravity Pitch

Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview

### 3: obtain, evaluate, and communicate information about how forces affect the motion of objects

3.a: Construct an explanation based on evidence using Newton?s Laws of how forces affect the acceleration of a body.

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview

3.a.a1: Explain and predict the motion of a body in absence of a net force and when forces are applied using Newton?s 1st Law (principle of inertia).

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview

Fan Cart Physics

Force and Fan Carts

Explore the laws of motion using a simple fan cart. Use the buttons to select the speed of the fan and the surface, and press Play to begin. You can drag up to three objects onto the fan cart. The speed of the cart is displayed with a speedometer and recorded in a table and a graph. 5 Minute Preview

3.a.a3: Calculate the acceleration for an object using Newton?s 2nd Law, including situations where multiple forces act together.

Crumple Zones

Design a car to protect a test dummy in a collision. Adjust the length and stiffness of the crumple zone and the rigidity of the safety cell to determine how the car will deform during the crash. Add seat belts and/or airbags to prevent the dummy from hitting the steering wheel. Three different body types (sedan, SUV, and subcompact) are available and a wide range of crash speeds can be used. 5 Minute Preview

Feed the Monkey (Projectile Motion)

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview

Roller Coaster Physics

3.a.a4: Identify the pair of equal and opposite forces between two interacting bodies and relate their magnitudes and directions using Newton?s 3rd Law.

Crumple Zones

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview

3.b: Develop and use a model of a Free Body Diagram to represent the forces acting on an object (both equilibrium and non-equilibrium).

3.b.b1: Construct a free body diagram and identify applicable forces for an object on an inclined plane.

Atwood Machine

Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview

Inclined Plane - Simple Machine

3.c: Use mathematical representations to calculate magnitudes and vector components for typical forces including gravitational force, normal force, friction forces, tension forces, and spring forces.

3.c.c1: Calculate the weight of various masses.

Beam to Moon (Ratios and Proportions) - Metric

Apply ratios and proportions to find the weight of a person on the moon (or on another planet). Weigh an object on Earth and on the moon and weigh the person on Earth. Then set up and solve the proportion of the Earth weights to the moon weights. 5 Minute Preview

3.c.c5: Honors/Accelerated Extension: Calculate acceleration and magnitude of forces for an object on an inclined plane.

Inclined Plane - Rolling Objects

Observe and compare objects of different shapes as they roll or slide down an inclined plane. Compare the percentages of translational and rotational kinetic energy for each object, and see how this affects how quickly each object moves. The slope of each ramp can be adjusted, and a variety of materials can be used for the objects and ramps. 5 Minute Preview

Inclined Plane - Simple Machine

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview

3.c.c6: Honors/Accelerated Extension: Perform calculations for spring forces using Hooke?s Law.

Determining a Spring Constant

Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview

Period of Mass on a Spring

Measure the period of a mass on the end of a spring. Determine the effects of gravitational acceleration, mass, and the spring constant on the period of the spring. Create an equation for the period of a spring given its mass and spring constant. 5 Minute Preview

### 4: obtain, evalulate, and communicate information to identify the force or force component responsible for causing an object to move along a circular path

4.a: Plan and carry out an investigation to gather evidence to identify the force or force component responsible for causing an object to move along a circular path.

Moment of Inertia

Place masses on a circular table and see how fast it spins when struck by a piston. Discover the relationships between angular velocity, mass, radius and moment of inertia for collections of point-masses, rings, disks, and more complex shapes. 5 Minute Preview

Uniform Circular Motion

Measure the position, velocity, and acceleration (both components and magnitude) of an object undergoing circular motion. The radius and velocity of the object can be controlled, along with the mass of the object. The forces acting on the object also can be recorded. 5 Minute Preview

4.b: Calculate the magnitude of a centripetal acceleration.

Uniform Circular Motion

Measure the position, velocity, and acceleration (both components and magnitude) of an object undergoing circular motion. The radius and velocity of the object can be controlled, along with the mass of the object. The forces acting on the object also can be recorded. 5 Minute Preview

4.c: Develop and use a model to describe the mathematical relationship between mass, distance, and force as expressed by Newton?s Universal Law of Gravitation. (Optional Extension: Identify and describe a system of torque-producing forces acting in equilibrium.)

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview

### 5: obtain, evaluate, and communicate information about the importance of law of conservation of energy in predicting the behavior of physical systems

5.b: Use mathematics and computational thinking to analyze, evaluate, and apply the principle of conservation of energy and the Work-Kinetic Energy Theorem for closed systems.

Crumple Zones

5.b.b1: Calculate the kinetic energy and gravitational potential energy of an object.

Energy of a Pendulum

Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph. 5 Minute Preview

Inclined Plane - Rolling Objects

Inclined Plane - Sliding Objects

Potential Energy on Shelves

Compare the potential energy of several objects when you place them on shelves of different heights. Learn that two objects at different heights can have the same potential energy, while two objects at the same height can have different potential energies. 5 Minute Preview

Roller Coaster Physics

5.b.b2: Calculate the amount of work performed by a force on an object.

Inclined Plane - Simple Machine

5.b.b4: Honors/Accelerated Extension: Analyze a force-position graph to determine the amount of work done on an object by a linear force.

Inclined Plane - Simple Machine

### 6: obtain, evaluate, and communicate information about the importance of Law of Conservation of Linear Momentum in predicting the behavior of physical systems

6.a: Describe situations in which momentum is and is not conserved

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview

Air Track

Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview

6.b: Construct an argument supported by evidence of the use of the principle of conservation of momentum to describe a physical system.

6.b.b3: Describe and perform calculations involving one dimensional momentum.

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview

Air Track

6.b.b5: Honors/Accelerated Extension: Experimentally and mathematically compare and contrast inelastic and elastic collisions.

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview

Air Track

### 7: obtain, evaluate, and communicate information about electrical force interactions

7.a: Develop and use mathematical models and generate diagrams to compare and contrast the electric and gravitational forces between two objects.

Charge Launcher

Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview

Coulomb Force (Static)

Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview

Gravitational Force

Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview

Pith Ball Lab

Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview

7.c: Predict changes in electric potential energy for a system of two like and unlike charges.

Charge Launcher

Launch a charged particle into a chamber. Charged particles can be added into the chamber to influence the path of the moving particle. The launch speed can be changed as well. Try to match a given path by manipulating the fixed particles in the chamber. 5 Minute Preview

Pith Ball Lab

Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview

### 8: obtain, evaluate, and communicate information about electrical circuits

8.a: Explain current flow as the result of potential difference.

8.a.a1: Explain the flow of electrons in terms of alternating and direct current.

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview

8.b: Plan and carry out an investigation of voltage, current, resistance, and power for a single resistor circuit.

8.b.b1: Calculate the cost of using electrical energy (kW-hr) in electrical appliances.

Household Energy Usage

Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact. 5 Minute Preview

8.c: Compare and contrast series and parallel circuits.

8.c.c1: Illustrate circuit diagrams using appropriate symbols for resistors, battery, light bulbs, and switch.

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview

8.c.c2: Plan and carry out an investigation to analyze simple series and parallel DC circuits.

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview

8.c.c3: Apply Ohm?s Law to analyze steady-state DC circuits in series and parallel to determine the voltage across, current through, total resistance of and power dissipated/added by each element in the circuit.

Advanced Circuits

Circuits

8.c.c4: Explain the nature of household circuits and the use of fuses and circuit breakers within them.

Advanced Circuits

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview

Circuits

### 9: obtain, evaluate, and communicate information about electrical and magnetic force interactions

9.a: Plan and carry out investigations to clarify the relationship between electric currents and magnetic fields.

9.a.a1: Honors/Accelerated Extension: Determine the direction of the magnetic field around a current- carrying straight wire using a right-hand rule.

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview

9.c: Explore experimentally how magnetic induction creates an electric current.

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview

9.d: Construct working models of electric motors and generators to show the interplay of electric and magnetic forces.

9.d.d2: Honors/Accelerated Extension: Determine the direction of the magnetic force for current-carrying wires and moving charges in magnetic fields using a right-hand rule.

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview

### 10: obtain, evaluate, and communicate information about the properties and applications of mechanical waves and sound

10.a: Develop and use mathematical models to explain mechanical and electromagnetic waves as a propagating disturbance that transfers energy.

10.a.a1: Mathematically describe how the velocity, frequency, and wavelength of a propagating wave are related.

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview

10.b: Construct an explanation that analyzes the production and characteristics of sound waves.

10.b.b1: Explain Doppler Effect, standing waves, wavelength, the relationship between amplitude and the energy of the wave, and the relationship between frequency and pitch.

Doppler Shift

Observe sound waves emitted from a moving vehicle. Measure the frequency of sound waves in front of and behind the vehicle as it moves, illustrating the Doppler effect. The frequency of sound waves, speed of the source, and the speed of sound can all be manipulated. Motion of the vehicle can be linear, oscillating, or circular. 5 Minute Preview

Doppler Shift Advanced

Derive an equation to calculate the frequency of an oncoming sound source and a receding sound source. Also, calculate the Doppler shift that results from a moving observer and a stationary sound source. The source velocity, sound velocity, observer velocity, and sound frequency can all be manipulated. 5 Minute Preview

Hearing: Frequency and Volume

Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview

10.b.b2: Honors/Accelerated Extension: Calculate the shift in frequency due to the Doppler effect.

Doppler Shift Advanced

Derive an equation to calculate the frequency of an oncoming sound source and a receding sound source. Also, calculate the Doppler shift that results from a moving observer and a stationary sound source. The source velocity, sound velocity, observer velocity, and sound frequency can all be manipulated. 5 Minute Preview

10.c: Honors/Accelerated Extension: Plan and carry out investigations examining resonance on a string and resonance in closed and open pipes.

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview

### 11: obtain, evaluate, and communicate information about the properties and applications of electromagnetic waves

11.a: Plan and carry out investigations to characterize the properties and behavior of electromagnetic waves.

11.a.a1: Explain the properties of waves including, but not limited to, amplitude (intensity), frequency, wavelength, and the relationship between frequency or wavelength and the energy of the wave.

Big Bang Theory - Hubble's Law

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe. 5 Minute Preview

Star Spectra

Analyze the spectra of a variety of stars. Determine the elements that are represented in each spectrum, and use this information to infer the temperature and classification of the star. Look for unusual features such as redshifted stars, nebulae, and stars with large planets. 5 Minute Preview

11.a.a2: Investigate and solve problems involving refraction of light in relation to the speed of light in media, index of refraction, and angles of incidence and refraction (Snell?s Law).

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview

11.b: Develop and use models to describe and calculate characteristics related to the interference and diffraction of waves (single and double slits).

11.b.b1: Explain Doppler Effect, standing waves, wavelength, the relationship between amplitude and the energy of the wave, and the relationship between frequency and pitch.

Doppler Shift

Observe sound waves emitted from a moving vehicle. Measure the frequency of sound waves in front of and behind the vehicle as it moves, illustrating the Doppler effect. The frequency of sound waves, speed of the source, and the speed of sound can all be manipulated. Motion of the vehicle can be linear, oscillating, or circular. 5 Minute Preview

Doppler Shift Advanced

Derive an equation to calculate the frequency of an oncoming sound source and a receding sound source. Also, calculate the Doppler shift that results from a moving observer and a stationary sound source. The source velocity, sound velocity, observer velocity, and sound frequency can all be manipulated. 5 Minute Preview

Hearing: Frequency and Volume

Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview

11.b.b2: Construct an argument for the wave nature of light based on observations of diffraction patterns.

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview

11.c: Plan and carry out investigations to describe common features of light in terms of color, polarization, spectral composition.

11.c.c1: Demonstrate the dispersion of white light into a color spectrum and the addition of primary and secondary colors to form white light.

Additive Colors

Control the intensity of red, green, and blue spotlights. Additive colors can be observed where the spotlights overlap. The RGB value of any point can be measured. Just about any color can be created by mixing varying amounts of red, green, and blue light. 5 Minute Preview

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview

Color Absorption

Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview

Subtractive Colors

Move spots of yellow, cyan, and magenta pigment on a white surface. As the colors overlap, other colors can be seen due to color subtraction. The color of most things you see--such as cars, leaves, paintings, houses, and clothes--are due to color subtraction. The intensity of the cyan, magenta, and yellow can be adjusted, and the RGB value at any location can be measured. 5 Minute Preview

### 12: plan and carry out investigations, using lenses and mirrors, to identify the behavior of light

12.a: Construct optical ray diagrams for lenses, curved mirrors, and plane mirrors and predict the properties (reduced/enlarged, real/virtual, upright/ inverted) of the image.

Ray Tracing (Lenses)

Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview

Ray Tracing (Mirrors)

Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image. 5 Minute Preview

12.b: Perform calculations related to focal length, image distance, object distance and image magnification for thin lenses, curved mirrors, and plane mirrors.

Ray Tracing (Lenses)

Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview

Ray Tracing (Mirrors)

Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image. 5 Minute Preview

### 13: obtain, evaluate and communicate information about nuclear changes of matter and related technological applications

13.a: Develop and use models to explain, compare, and contrast nuclear processes including radioactive decay, fission, and fusion.

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview

13.b: Construct an argument to compare and contrast mechanisms and characteristics of radioactive decay.

13.b.b1: Explain alpha, beta, and gamma decays and their effects.

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview

13.b.b2: Optional Extension : balance nuclear equations involving alpha and beta decay.

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview

13.c: Develop and use mathematical and graphical models to calculate the amount of substance present after a given amount of time based on its half-life and relate this to the law of conservation of mass and energy. (Calculation should be limited to integer multiples of half-life.)

13.c.c1: Honors/Accelerated Extension: Use mathematics and computational thinking to apply the exponential decay equation.

Half-life

Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available January 1 and July 1.

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote