- Home
- Find Gizmos
- Browse by Standard

# Oklahoma - Mathematics: Pre-Algebra

## Academic Standards | Adopted: 2022

### PA.N: : Numbers & Operations

PA.N.1: : Read, write, compare, classify, and represent real numbers, and use them to solve problems in various contexts.

PA.N.1.1: : Develop and apply the properties of integer exponents, including a ^ 0 = 1 (with a not equal to 0), to generate equivalent numerical and algebraic expressions.

Dividing Exponential Expressions

Choose the correct steps to divide exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

Exponents and Power Rules

Choose the correct steps to simplify expressions with exponents using the rules of exponents and powers. Use feedback to diagnose incorrect steps. 5 Minute Preview

Multiplying Exponential Expressions

Choose the correct steps to multiply exponential expressions. Use the feedback to diagnose incorrect steps. 5 Minute Preview

PA.N.1.2: : Express and compare approximations of very large and very small numbers using scientific notation.

Unit Conversions

Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems. 5 Minute Preview

Unit Conversions 2 - Scientific Notation and Significant Digits

Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview

PA.N.1.3: : Multiply and divide numbers expressed in scientific notation and express the answer in scientific notation.

Unit Conversions

Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems. 5 Minute Preview

Unit Conversions 2 - Scientific Notation and Significant Digits

Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview

PA.N.1.4: : Compare and order real numbers; locate real numbers on a number line. Identify the square roots of perfect squares to 400 or, if it is not a perfect square root, locate it as an irrational number between two consecutive positive integers.

Comparing and Ordering Decimals

Use grids to model decimal numbers and compare them graphically. Then compare the numbers on a number line. 5 Minute Preview

Integers, Opposites, and Absolute Values

Compare and order integers using draggable points on a number line. Also explore opposites and absolute values on the number line. 5 Minute Preview

Ordering Percents, Fractions, and Decimals Greater Than 1

Compare and order numbers greater than 1 using area grids and a number line. Examine the numbers represented as percents, improper fractions, and decimals. 5 Minute Preview

Ordering and Approximating Square Roots

Order square roots on a number line. Approximate the square roots using the side lengths of square regions in a grid. 5 Minute Preview

Rational Numbers, Opposites, and Absolute Values

Use a number line to compare rational numbers. Change values by dragging points on the number line. Compare the opposites and absolute values of the numbers. 5 Minute Preview

### PA.A: : Algebraic Reasoning & Algebra

PA.A.1: : Explain the concept of function in mathematical situations and distinguish between the concepts of linear and nonlinear functions.

PA.A.1.1: : Recognize that a function is a relationship between an independent variable and a dependent variable in which the value of the independent variable determines the value of the dependent variable.

Function Machines 1 (Functions and Tables)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

Function Machines 2 (Functions, Tables, and Graphs)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

Function Machines 3 (Functions and Problem Solving)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

Introduction to Functions

Determine if a relation is a function using the mapping diagram, ordered pairs, or the graph of the relation. Drag arrows from the domain to the range, type in ordered pairs, or drag points to the graph to add inputs and outputs to the relation. 5 Minute Preview

Linear Functions

Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview

Points, Lines, and Equations

Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview

PA.A.1.2: : Use linear functions to represent and model mathematical situations.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Linear Functions

Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview

Points, Lines, and Equations

Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview

PA.A.1.3: : Identify a function as linear if it can be expressed in the form y = mx + b or if its graph is a non-vertical straight line.

Linear Functions

Determine if a relation is a function from the mapping diagram, ordered pairs, or graph. Use the graph to determine if it is linear. 5 Minute Preview

Points, Lines, and Equations

Compare the graph of a linear function to its rule and to a table of its values. Change the function by dragging two points on the line. Examine how the rule and table change. 5 Minute Preview

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

PA.A.2: : Identify and justify linear functions using mathematical models and situations; solve problems involving linear functions and interpret results in the original context.

PA.A.2.1: : Represent linear functions with tables, verbal descriptions, symbols, and graphs; translate from one representation to another.

Linear Functions

Points, Lines, and Equations

PA.A.2.2: : Identify, describe, and analyze linear relationships between two variables.

Cat and Mouse (Modeling with Linear Systems)

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview

Cat and Mouse (Modeling with Linear Systems) - Metric

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview

Distance-Time Graphs

Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

PA.A.2.3: : Identify graphical properties of linear functions, including slope and intercepts. Know that the slope equals the rate of change, and that the y-intercept is zero when the function represents a proportional relationship.

Cat and Mouse (Modeling with Linear Systems)

Experiment with a system of two lines representing a cat-and-mouse chase. Adjust the speeds of the cat and mouse and the head start of the mouse, and immediately see the effects on the graph and on the chase. Connect real-world meaning to slope, y-intercept, and the intersection of lines. 5 Minute Preview

Cat and Mouse (Modeling with Linear Systems) - Metric

Direct and Inverse Variation

Adjust the constant of variation and explore how the graph of the direct or inverse variation function changes in response. Compare direct variation functions to inverse variation functions. 5 Minute Preview

Distance-Time Graphs

Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Slope

Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview

Slope-Intercept Form of a Line

Compare the slope-intercept form of a linear equation to its graph. Vary the coefficients and explore how the graph changes in response. 5 Minute Preview

PA.A.2.4: : Predict the effect on the graph of a linear function when the slope or y-intercept changes. Use appropriate tools to examine these effects.

Slope

Explore the slope of a line, and learn how to calculate slope. Adjust the line by moving points that are on the line, and see how its slope changes. 5 Minute Preview

Slope-Intercept Form of a Line

PA.A.2.5: : Solve problems involving linear functions and interpret results in the original context.

Cat and Mouse (Modeling with Linear Systems)

Cat and Mouse (Modeling with Linear Systems) - Metric

Distance-Time Graphs

Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Distance-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview

Slope-Intercept Form of a Line

PA.A.3: : Generate equivalent numerical and algebraic expressions and use algebraic properties to evaluate expressions.

PA.A.3.1: : Use substitution to simplify and evaluate algebraic expressions.

Equivalent Algebraic Expressions I

Grumpy’s Restaurant is now hiring! As a new chef at this underwater bistro, you’ll learn the basics of manipulating algebraic expressions. Learn how to make equivalent expressions using the Commutative and Associative properties, how to handle pesky subtraction and division, and how to identify equivalent and non-equivalent expressions. 5 Minute Preview

Equivalent Algebraic Expressions II

Continue your meteoric rise in the undersea culinary world in this follow-up to Equivalent Algebraic Expressions I. Make equivalent expressions by using the distributive property forwards and backwards, sort expressions by equivalence, and personally assist Chef Grumpy himself with a project that will bring him (and maybe you) fame and fortune. 5 Minute Preview

PA.A.3.2: : Justify steps in generating equivalent expressions by combining like terms and using order of operations (to include grouping symbols). Identify the properties used, including the properties of operations (associative, commutative, and distributive).

Equivalent Algebraic Expressions I

Grumpy’s Restaurant is now hiring! As a new chef at this underwater bistro, you’ll learn the basics of manipulating algebraic expressions. Learn how to make equivalent expressions using the Commutative and Associative properties, how to handle pesky subtraction and division, and how to identify equivalent and non-equivalent expressions. 5 Minute Preview

Equivalent Algebraic Expressions II

Continue your meteoric rise in the undersea culinary world in this follow-up to Equivalent Algebraic Expressions I. Make equivalent expressions by using the distributive property forwards and backwards, sort expressions by equivalence, and personally assist Chef Grumpy himself with a project that will bring him (and maybe you) fame and fortune. 5 Minute Preview

Order of Operations

Select and evaluate the operations in an expression following the correct order of operations. 5 Minute Preview

Simplifying Algebraic Expressions I

Meet Spidro, a quirky critter with an appetite for algebraic expressions! As Spidro's adopted owner, it's your responsibility to feed him so that he grows into… whatever it is that a Spidro grows into. But be careful - Spidro is a picky eater who prefers his food to be as simple as possible. Use the commutative property, distributive property, and the other properties of addition and multiplication to put expressions in simplest (and tastiest) form. 5 Minute Preview

Simplifying Algebraic Expressions II

Will you adopt Spidro, Centeon, or Ping Bee? They're three very different critters with one thing in common: a hunger for simplified algebraic expressions! Learn how the distributive property can be used to combine variable terms, producing expressions that will help your pet grow up healthy and strong. You'll become a pro at identifying terms that can be combined – even terms with exponents and multiple variables. With enough practice, you and your pet will be ready for the competitive expression eating circuit. Good luck! 5 Minute Preview

PA.A.4: : Represent and solve problems using mathematical models and situations with equations and inequalities involving linear expressions.

PA.A.4.1: : Solve mathematical problems using linear equations with one variable where there could be one, infinitely many, or no solutions. Represent situations using linear equations and interpret solutions in the original context.

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview

Solving Algebraic Equations II

Is solving equations tricky? If you know how to isolate a variable, you're halfway there. The other half? Don't do anything to upset the balance of an equation. Join our plucky variable friend as he encounters algebraic equations and a (sometimes grumpy) equal sign. With a little practice, you'll find that solving equations isn't tricky at all. 5 Minute Preview

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

PA.A.4.2: : Represent, write, solve, and graph problems leading to linear inequalities with one variable in the form px + q > r and px + q

Solving Linear Inequalities in One Variable

Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview

PA.A.4.3: : Represent real-world situations using equations and inequalities involving one variable.

Modeling and Solving Two-Step Equations

Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview

Solving Equations by Graphing Each Side

Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response. 5 Minute Preview

Solving Linear Inequalities in One Variable

Solve one-step inequalities in one variable. Graph the solution on a number line. 5 Minute Preview

Solving Two-Step Equations

Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview

### PA.GM: : Geometry & Measurement

PA.GM.1: : Apply the Pythagorean theorem to solve problems involving triangles.

PA.GM.1.1: : Justify the Pythagorean theorem using measurements, diagrams, or dynamic software to solve problems in two dimensions involving right triangles.

Pythagorean Theorem

Explore the Pythagorean Theorem using a dynamic right triangle. Examine a visual, geometric application of the Pythagorean Theorem, using the areas of squares on the sides of the triangle. 5 Minute Preview

Pythagorean Theorem with a Geoboard

Build right triangles in an interactive geoboard and build squares on the sides of the triangles to discover the Pythagorean Theorem. 5 Minute Preview

PA.GM.1.2: : Use the Pythagorean theorem to find the distance between any two points in a coordinate plane.

Distance Formula

Explore the distance formula as an application of the Pythagorean theorem. Learn to see any two points as the endpoints of the hypotenuse of a right triangle. Drag those points and examine changes to the triangle and the distance calculation. 5 Minute Preview

PA.GM.2: : Justify and use formulas to calculate surface area and volume of three-dimensional figures.

PA.GM.2.1: : Calculate the surface area of a rectangular prism using decomposition or nets. Use appropriate units (e.g., cm²).

Surface and Lateral Areas of Prisms and Cylinders

Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview

PA.GM.2.2: : Calculate the surface area of a cylinder, in terms of pi and using approximations for pi, using decomposition or nets. Use appropriate units (e.g., cm²).

Surface and Lateral Areas of Prisms and Cylinders

Vary the dimensions of a prism or cylinder and investigate how the surface area changes. Use the dynamic net of the solid to compute the lateral area and the surface area of the solid. 5 Minute Preview

PA.GM.2.3: : Justify why base area (B) and height (h) in the formula V = Bh are multiplied to find the volume of a rectangular prism. Use appropriate units (e.g., cm³).

Balancing Blocks (Volume)

This Gizmo provides you with two challenges. First, use blocks to build a figure with a given volume. Then, try to balance the blocks on a platform that sits on the tip of a cone. The dimensions of the platform can be adjusted, and blocks can be added or deleted by clicking on the model. 5 Minute Preview

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

PA.GM.2.4: : Develop and use the formulas V = pi x r²h and V = Bh to determine the volume of right cylinders, in terms of pi and using approximations for pi. Justify why base area (B) and height (h) are multiplied to find the volume of a right cylinder. Use appropriate units (e.g., cm³).

Prisms and Cylinders

Vary the height and base-edge or radius length of a prism or cylinder and examine how its three-dimensional representation changes. Determine the area of the base and the volume of the solid. Compare the volume of an oblique prism or cylinder to the volume of a right prism or cylinder. 5 Minute Preview

### PA.D: : Data & Probability

PA.D.1: : Display and interpret data in a variety of ways, including using scatter plots and approximate lines of best fit. Use the line of best fit and average rate of change to make predictions and draw conclusions about data.

PA.D.1.1: : Describe the impact that inserting or deleting a data point has on the mean and the median of a data set. Create data displays using technology to examine this impact.

Describing Data Using Statistics

Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview

Movie Reviewer (Mean and Median)

Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview

Reaction Time 2 (Graphs and Statistics)

Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview

PA.D.1.2: : Explain how outliers affect measures of center and spread.

Describing Data Using Statistics

Investigate the mean, median, mode, and range of a data set through its graph. Manipulate the data and watch how the mean, median, mode, and range change (or, in some cases, how they don't change). 5 Minute Preview

Mean, Median, and Mode

Build a data set and find the mean, median, and mode. Explore the mean, median, and mode illustrated as frogs on a seesaw, frogs on a scale, and as frogs stacked under a bar of variable height. 5 Minute Preview

Movie Reviewer (Mean and Median)

Movie reviewers rate movies on a scale of 0 to 10. Each movie comes with a set of reviews that can be changed by the user. The mean of a data set can be explored using a see-saw balance model. Students can also find the median, mode, and range of the data set. 5 Minute Preview

PA.D.1.3: : Collect, display, and interpret data using scatter plots. Use the shape of the scatter plot to find the informal line of best fit, make statements about the average rate of change, and make predictions about values not in the original data set. Use appropriate titles, labels, and units.

Correlation

Explore the relationship between the correlation coefficient of a data set and its graph. Fit a line to the data and compare the least-squares fit line. 5 Minute Preview

Least-Squares Best Fit Lines

Fit a line to the data in a scatter plot using your own judgment. Then compare the least squares line of best fit. 5 Minute Preview

Solving Using Trend Lines

Examine the scatter plots for data related to weather at different latitudes. The Gizmo includes three different data sets, one with negative correlation, one positive, and one with no correlation. Compare the least squares best-fit line. 5 Minute Preview

Trends in Scatter Plots

Examine the scatter plot for a random data set with negative or positive correlation. Vary the correlation and explore how correlation is reflected in the scatter plot and the trend line. 5 Minute Preview

PA.D.2: : Calculate experimental probabilities and reason about probabilities to model and solve problems.

PA.D.2.1: : Calculate experimental probabilities and represent them as percents, fractions, and decimals between 0 and 1. Use experimental probabilities to predict relative frequencies when actual probabilities are unknown.

Geometric Probability

Randomly throw darts at a target and see what percent are "hits." Vary the size of the target and repeat the experiment. Study the relationship between the area of the target and the percent of darts that strike it 5 Minute Preview

Probability Simulations

Experiment with spinners and compare the experimental probability of particular outcomes to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview

Spin the Big Wheel! (Probability)

Step right up! Spin the big wheel! Each spin can result in no prize, a small prize, or a big prize. The wheel can be spun by 1, 10, or 100 players. Results are recorded on a frequency table or a circle graph. You can also design your own wheel and a sign that describes the probabilities for your wheel. 5 Minute Preview

Theoretical and Experimental Probability

Experiment with spinners and compare the experimental probability of a particular outcome to the theoretical probability. Select the number of spinners, the number of sections on a spinner, and a favorable outcome of a spin. Then tally the number of favorable outcomes. 5 Minute Preview

PA.D.2.2: : Determine how samples are chosen (randomness) to draw and support conclusions about generalizing a sample to a population, including identifying limitations and biases.

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview

PA.D.2.3: : Define, compare, and contrast the probabilities of dependent and independent events.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

Correlation last revised: 9/30/2022

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available Jan 01, 2024.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote