- Home
- Find Gizmos
- Browse by Standard (CAN)
- Common Core State Standards
- Mathematics: 5th Grade
Alberta - Mathematics: 5th Grade
Mathematics Curriculum | Adopted: 2022
5.1: : Number: Quantity is measured with numbers that enable counting, labelling, comparing, and operating.
5.1.1: : Students analyze patterns in place value.
5.1.1.1: : Relate the names of place values that are the same number of places to the left and right of the ones place.
Modeling Decimals (Area and Grid Models)
Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview
Modeling Whole Numbers and Decimals (Base-10 Blocks)
Model numbers with base-10 blocks. Drag flats, rods, and individual cubes onto a mat to model a number. Blocks can be exchanged from one area of the mat to the other. Four sets of blocks are available to model a variety of whole numbers and decimals. 5 Minute Preview
5.1.1.2: : Express numbers within 10 000 000, including decimal numbers to thousandths, using words and numerals.
Modeling Decimals (Area and Grid Models)
Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview
Modeling Whole Numbers and Decimals (Base-10 Blocks)
Model numbers with base-10 blocks. Drag flats, rods, and individual cubes onto a mat to model a number. Blocks can be exchanged from one area of the mat to the other. Four sets of blocks are available to model a variety of whole numbers and decimals. 5 Minute Preview
5.1.1.3: : Relate a decimal number to its position on the number line.
Modeling Decimals (Area and Grid Models)
Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview
Treasure Hunter (Decimals on the Number Line)
Drive a desert highway searching for buried treasure. Learn to use the car's tens, ones, tenths, and hundredths gears, along with a GPS system (number line), to find the right place to dig. Plot your findings on a zoomable number line map. Can you become a master Treasure Hunter? 5 Minute Preview
5.1.1.4: : Determine a decimal number between any two other decimal numbers.
Modeling Decimals (Area and Grid Models)
Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview
Treasure Hunter (Decimals on the Number Line)
Drive a desert highway searching for buried treasure. Learn to use the car's tens, ones, tenths, and hundredths gears, along with a GPS system (number line), to find the right place to dig. Plot your findings on a zoomable number line map. Can you become a master Treasure Hunter? 5 Minute Preview
5.1.1.5: : Compare and order numbers, including decimal numbers.
Modeling Decimals (Area and Grid Models)
Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview
Treasure Hunter (Decimals on the Number Line)
Drive a desert highway searching for buried treasure. Learn to use the car's tens, ones, tenths, and hundredths gears, along with a GPS system (number line), to find the right place to dig. Plot your findings on a zoomable number line map. Can you become a master Treasure Hunter? 5 Minute Preview
5.1.1.6: : Express the relationship between two numbers, including decimal numbers, using
Modeling Decimals (Area and Grid Models)
Model and compare decimals using area models. Set the number of sections in each model to 1, 10, or 100, and then click in the models to shade sections. Compare decimals visually and on a number line. 5 Minute Preview
5.1.1.7: : Round numbers, including decimal numbers, to various places according to context.
Rounding Whole Numbers (Number Line)
Place points on a number line. Round these values to the nearest ten or hundred. Visualize rounding by showing the number line as a hill or series of hills. These hills cause the points to roll to the nearest valley (nearest multiple of ten or one hundred). 5 Minute Preview
5.1.2: : Students add and subtract within 1 000 000, including decimal numbers to thousandths, using standard algorithms.
5.1.2.1: : Add and subtract numbers, including decimal numbers, using standard algorithms.
Adding Whole Numbers and Decimals (Base-10 Blocks)
Use base-10 blocks to model two numbers. Then combine the blocks to model the sum. Blocks of equal value can be exchanged from one area of the mat to the other to help understand carrying when adding. Four sets of blocks are available to model different place values. 5 Minute Preview
Cargo Captain (Multi-digit Subtraction)
You are the captain of an interplanetary cargo ship, delivering important supplies to the outer planets. The cargo can be stored in barrels, crates, and holds. (There are 10 barrels in a crate, and 10 crates in a hold.) Model multi-digit subtraction by unloading cargo on each planet. 5 Minute Preview
Subtracting Whole Numbers and Decimals (Base-10 Blocks)
Use base-10 blocks to model a starting number. Then subtract blocks from this number by dragging them into a subtraction bin. Blocks of equal value can be exchanged from one section of the mat to the other to help understand regrouping and borrowing. Four sets of blocks are available to model different place values. 5 Minute Preview
Target Sum Card Game (Multi-digit Addition)
Play an addition card game! The goal is to create a sum that is as close as possible to the target sum. Students will deepen their understanding of place value as they get better at playing the game. Many game options allow students to vary the game for more practice. The game can be played with one or two players. 5 Minute Preview
Whole Numbers with Base-10 Blocks
Use base-10 blocks to model, add, and subtract whole numbers. Learn about place value using flats (hundreds), rods (tens), and cubes (ones). Group or ungroup blocks as needed to add or subtract. This regrouping is often called "carrying" when adding, and "borrowing" when subtracting. 5 Minute Preview
5.1.2.3: : Solve problems using addition and subtraction, including problems involving money.
Adding Whole Numbers and Decimals (Base-10 Blocks)
Use base-10 blocks to model two numbers. Then combine the blocks to model the sum. Blocks of equal value can be exchanged from one area of the mat to the other to help understand carrying when adding. Four sets of blocks are available to model different place values. 5 Minute Preview
Cargo Captain (Multi-digit Subtraction)
You are the captain of an interplanetary cargo ship, delivering important supplies to the outer planets. The cargo can be stored in barrels, crates, and holds. (There are 10 barrels in a crate, and 10 crates in a hold.) Model multi-digit subtraction by unloading cargo on each planet. 5 Minute Preview
Subtracting Whole Numbers and Decimals (Base-10 Blocks)
Use base-10 blocks to model a starting number. Then subtract blocks from this number by dragging them into a subtraction bin. Blocks of equal value can be exchanged from one section of the mat to the other to help understand regrouping and borrowing. Four sets of blocks are available to model different place values. 5 Minute Preview
Target Sum Card Game (Multi-digit Addition)
Play an addition card game! The goal is to create a sum that is as close as possible to the target sum. Students will deepen their understanding of place value as they get better at playing the game. Many game options allow students to vary the game for more practice. The game can be played with one or two players. 5 Minute Preview
Whole Numbers with Base-10 Blocks
Use base-10 blocks to model, add, and subtract whole numbers. Learn about place value using flats (hundreds), rods (tens), and cubes (ones). Group or ungroup blocks as needed to add or subtract. This regrouping is often called "carrying" when adding, and "borrowing" when subtracting. 5 Minute Preview
5.1.3: : Students determine divisibility of natural numbers.
5.1.3.1: : Investigate divisibility by natural numbers to 10, including 0.
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
5.1.3.2: : Generalize divisibility tests for 2, 3, and 5.
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
5.1.3.3: : Determine factors of natural numbers using divisibility tests.
Factor Trees (Factoring Numbers)
The Factor Trees Gizmo has two modes. In Factor mode, you can create factor trees to factor composite numbers into primes. In Build mode, you can build numbers by multiplying primes together. Can you build all composite numbers up to 50? Any whole composite number up to 999 can be factored or built with the Gizmo. 5 Minute Preview
Finding Factors with Area Models
Find factors of a number using an area model. Reshape the area rectangle to see different factorizations of the number. Find the prime factorization using a factor tree. 5 Minute Preview
5.1.4: : Students multiply and divide natural numbers within 100 000, including with standard algorithms.
5.1.4.4: : Express a quotient with or without a remainder according to context.
No Alien Left Behind (Division with Remainders)
The alien school children from the planet Zigmo travel to distant planets on a field trip. The goal is to select a bus size so that all buses are full and no aliens are left behind. This is a nice illustration of division with remainders. 5 Minute Preview
5.1.4.6: : Solve problems using multiplication and division of natural numbers.
Chocomatic (Multiplication, Arrays, and Area)
Use the Chocomatic to design candy bars made out of chocolate squares. Use multiplication to find the number of squares in each chocolate bar. Build collections of chocolate bars that all have the same number of squares. Solve multiplication problems by joining two smaller chocolate bars into a large bar. 5 Minute Preview
Critter Count (Modeling Multiplication)
Use groups of critters on leaves to model multiplication as repeated addition. Change the expression to change the number of groups or the number of critters per group. Display the critters either on leaves or as a rectangular array. 5 Minute Preview
No Alien Left Behind (Division with Remainders)
The alien school children from the planet Zigmo travel to distant planets on a field trip. The goal is to select a bus size so that all buses are full and no aliens are left behind. This is a nice illustration of division with remainders. 5 Minute Preview
5.1.5: : Students interpret improper fractions.
5.1.5.1: : Relate fractions, improper fractions, and mixed numbers to their positions on the number line.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.1.5.2: : Count beyond 1 using fractions with the same denominator.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.1.5.3: : Model fractions, including improper fractions and mixed numbers, using quantities, lengths, and areas.
Fraction Artist 1 (Area Models of Fractions)
Develop understanding of fractions by making modern paintings. Find different ways to divide a canvas into equal-sized sections. Make paintings to represent simple fractions and to find fractions that are equivalent to one-half. 5 Minute Preview
Fraction Artist 2 (Area Models of Fractions)
Extend understanding of fractions by making modern paintings in the style of Piet Mondrian. Create and analyze paintings with different-sized sections. Compare the sizes of unit fractions. Find creative ways to color one-half of a painting. This can be a nice introduction to adding fractions with unlike denominators. 5 Minute Preview
Fraction Garden (Comparing Fractions)
Plant flowers in two gardens to help develop fraction sense. The two gardens act as number lines, from 0 to 1. Use the flowers in the gardens to compare fractions and to explore equivalent fractions. Chalk marks can be drawn to divide the garden into equal sections. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
Modeling Fractions (Area Models)
Model and compare fractions using area models. Set the denominators with the arrow buttons, and then set the numerators with the arrow buttons or by clicking in the models. Compare fractions visually, on a number line, or numerically using the least common denominator. 5 Minute Preview
Toy Factory (Set Models of Fractions)
Create a set of stuffed animals: monkeys, giraffes, and rabbits. Toys can be painted red, green, or blue. Describe the makeup of the set (animals or colors) with fractions. Arrange the toys into groups to simplify the fractions. 5 Minute Preview
5.1.5.4: : Express improper fractions and mixed numbers symbolically.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.1.5.5: : Express an improper fraction as a mixed number and vice versa.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.1.5.6: : Compare fractions, including improper fractions and mixed numbers, to benchmarks of 0, 1/2, and 1.
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.1.6: : Students add and subtract fractions with common denominators.
5.1.6.1: : Investigate the composition and decomposition of a quantity within 1 using unit fractions.
Equivalent Fractions (Fraction Tiles)
Explore fractions using the Fractionator, the machine that makes fraction tiles. Compare fractions and find equivalent fractions by arranging the tiles on two horizontal rows. Explore simplifying fractions. Add fractions and express sums as improper fractions or mixed numbers. 5 Minute Preview
Fraction Artist 1 (Area Models of Fractions)
Develop understanding of fractions by making modern paintings. Find different ways to divide a canvas into equal-sized sections. Make paintings to represent simple fractions and to find fractions that are equivalent to one-half. 5 Minute Preview
Fraction Artist 2 (Area Models of Fractions)
Extend understanding of fractions by making modern paintings in the style of Piet Mondrian. Create and analyze paintings with different-sized sections. Compare the sizes of unit fractions. Find creative ways to color one-half of a painting. This can be a nice introduction to adding fractions with unlike denominators. 5 Minute Preview
5.1.6.2: : Express the composition or decomposition of fractions with common denominators as a sum or difference.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
5.1.6.3: : Compare strategies for adding or subtracting improper fractions to strategies for adding or subtracting mixed numbers.
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.1.6.4: : Add and subtract fractions with common denominators within 100, including improper fractions and mixed numbers.
Adding Fractions (Fraction Tiles)
Add fractions with the help of the Fractionator, a fraction-tile-making machine in the Gizmo. Model sums by placing the tiles on side-by-side number lines. Explore the usefulness of common denominators in adding. Express sums as improper fractions or mixed numbers. 5 Minute Preview
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
Improper Fractions and Mixed Numbers
Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview
5.1.6.5: : Solve problems requiring addition and subtraction of fractions with common denominators, including improper fractions and mixed numbers.
Fractions Greater than One (Fraction Tiles)
Explore fractions greater than one with the Fractionator, a fraction-tile-making machine in the Gizmo. Create sums of fraction tiles on two number lines. Sums greater than one are shown as improper fractions on the top number line, and as mixed numbers on the bottom number line. 5 Minute Preview
5.1.7: : Students employ ratios to represent relationships between quantities.
5.1.7.1: : Express part-part ratios and part-whole ratios of the same whole to describe various situations.
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
5.1.7.2: : Express, symbolically, the same part-whole relationship as a ratio, fraction, decimal, and percentage.
Part-to-part and Part-to-whole Ratios
Compare a ratio represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
Percents, Fractions, and Decimals
Compare a quantity represented by an area with its percent, fraction, and decimal forms. 5 Minute Preview
5.2: : Algebra: Equations express relationships between quantities.
5.2.1: : Students interpret numerical and algebraic expressions.
5.2.1.1: : Evaluate numerical expressions involving addition or subtraction in parentheses according to the order of operations.
Order of Operations
Select and evaluate the operations in an expression following the correct order of operations. 5 Minute Preview
5.2.1.3: : Express the product of a number and a variable using a coefficient.
Using Algebraic Expressions
Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview
5.2.1.6: : Write an algebraic expression involving one or two terms to describe an unknown value.
Using Algebraic Expressions
Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview
5.2.1.8: : Write equations involving one or two operations to represent a situation.
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
5.2.1.10: : Apply inverse operations to solve an equation, limited to equations with one or two operations.
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Equations on the Number Line
Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
5.2.1.11: : Verify the solution to an equation by evaluating expressions on each side of the equation.
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
5.2.1.12: : Solve problems using equations, limited to equations with one or two operations.
Modeling and Solving Two-Step Equations
Solve a two-step equation using a cup-and-counter model. Use step-by-step feedback to diagnose and correct incorrect steps. 5 Minute Preview
Solving Two-Step Equations
Choose the correct steps to solve a two-step equation. Use the feedback to diagnose incorrect steps. 5 Minute Preview
5.3: : Geometry: Shapes are defined and related by geometric attributes.
5.3.1: : Students investigate symmetry as a geometric property.
5.3.1.1: : Recognize symmetry in nature.
Holiday Snowflake Designer
Fold paper and cut in a certain way to make symmetrical snowflakes with six sides (similar to what can be found in nature) or with eight sides (an easier folding method). This simulation allows you to cut virtual paper on the computer screen with round dot or square dot "scissors" of various sizes before using physical paper. 5 Minute Preview
Quilting Bee (Symmetry)
Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview
5.3.1.3: : Investigate symmetry in familiar 2-D and 3-D shapes using hands-on materials or digital applications.
Quilting Bee (Symmetry)
Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview
5.3.1.4: : Show the line of symmetry of a 2-D shape.
Quilting Bee (Symmetry)
Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview
5.3.1.5: : Describe the order of rotation symmetry of a 2-D shape.
Quilting Bee (Symmetry)
Participate in an old-fashioned quilting bee and create a colorful, symmetrical quilt. Quilts can be created with a vertical, horizontal, or diagonal line of symmetry. Quilts can be folded to look for reflections, or rotated to test for rotational symmetry. 5 Minute Preview
5.3.1.6: : Compare the number of reflection and rotation symmetries of a 2-D shape to the number of equal sides and angles.
Holiday Snowflake Designer
Fold paper and cut in a certain way to make symmetrical snowflakes with six sides (similar to what can be found in nature) or with eight sides (an easier folding method). This simulation allows you to cut virtual paper on the computer screen with round dot or square dot "scissors" of various sizes before using physical paper. 5 Minute Preview
5.4: : Coordinate Geometry: Location and movement of objects in space can be communicated using a coordinate grid.
5.4.1: : Students relate location to position on a grid.
5.4.1.1: : Locate a point on a coordinate grid given the coordinates of the point.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
5.4.1.2: : Describe the location of a point on a coordinate grid using coordinates.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
5.4.1.3: : Describe the location of a point on a coordinate grid in relation to the location of another point using positional language.
City Tour (Coordinates)
Go sightseeing in fictional cities all over the world. Learn about coordinates on a graph by navigating around these cities on a grid-like city map. Some landmarks are shown on the map. For others, you are only given the coordinates. Can you find all of them? 5 Minute Preview
5.5: : Measurement: Attributes such as length, area, volume, and angle are quantified by measurement.
5.5.1: : Students estimate and calculate area using standard units.
5.5.1.7: : Express the area of a rectangle using standard units given the lengths of its sides.
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
5.5.1.8: : Compare the perimeters of various rectangles with the same area.
Fido's Flower Bed (Perimeter and Area)
Construct models of gardens on a grid using squares of sod. Fence the gardens to find and compare perimeters. Work with pre-built gardens made of 36 squares each to compare perimeters of shapes with equal areas. 5 Minute Preview
5.5.1.9: : Describe the rectangle with the least perimeter for a given area.
Fido's Flower Bed (Perimeter and Area)
Construct models of gardens on a grid using squares of sod. Fence the gardens to find and compare perimeters. Work with pre-built gardens made of 36 squares each to compare perimeters of shapes with equal areas. 5 Minute Preview
5.5.1.10: : Solve problems involving perimeter and area of rectangles.
Fido's Flower Bed (Perimeter and Area)
Construct models of gardens on a grid using squares of sod. Fence the gardens to find and compare perimeters. Work with pre-built gardens made of 36 squares each to compare perimeters of shapes with equal areas. 5 Minute Preview
Perimeter and Area of Rectangles
Discover how to find the perimeter and area of a rectangle, and of a square (which is really just a special case of a rectangle). 5 Minute Preview
5.6: : Patterns: Awareness of patterns supports problem solving in various situations.
5.6.1: : Students relate terms to position within an arithmetic sequence.
5.6.1.1: : Represent one-to-one correspondence between positions and terms of an arithmetic sequence in a table of values and on a coordinate grid.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
5.6.1.2: : Describe the graph of an arithmetic sequence as a straight line.
Arithmetic and Geometric Sequences
Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview
5.6.1.3: : Describe a rule, limited to one operation, that expresses correspondence between positions and terms of an arithmetic sequence.
Finding Patterns
Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview
5.6.1.5: : Determine the missing term in an arithmetic sequence that corresponds to a given position.
Finding Patterns
Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview
5.6.1.6: : Solve problems involving an arithmetic sequence.
Arithmetic Sequences
Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview
5.7: : Statistics: The science of collecting, analyzing, visualizing, and interpreting data can inform understanding and decision making.
5.7.1: : Students analyze frequency in categorical data.
5.7.1.1: : Examine categorized data in tables and graphs.
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
Mascot Election (Pictographs and Bar Graphs)
A brand new school is opening and it is time to elect the school mascot! Students can choose the Eagle, Lion, Bear, or Wolf. Voting results can be displayed in a table, tally chart, pictograph, bar graph, circle graph, or dot plot. You can change student votes by selecting a group of students and clicking a mascot. 5 Minute Preview
5.7.1.2: : Determine frequency for each category of a set of data by counting individual data points.
Mascot Election (Pictographs and Bar Graphs)
A brand new school is opening and it is time to elect the school mascot! Students can choose the Eagle, Lion, Bear, or Wolf. Voting results can be displayed in a table, tally chart, pictograph, bar graph, circle graph, or dot plot. You can change student votes by selecting a group of students and clicking a mascot. 5 Minute Preview
5.7.1.9: : Organize counts of categorized data in a frequency table.
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
5.7.1.10: : Create various representations of data, including with technology, to interpret frequency.
Reaction Time 1 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 1 Student Exploration focuses on range, mode, and median. 5 Minute Preview
Reaction Time 2 (Graphs and Statistics)
Test your reaction time by catching a falling ruler or clicking a target. Create a data set of experiment results, and calculate the range, mode, median, and mean of your data. Data can be displayed on a list, table, bar graph or dot plot. The Reaction Time 2 Student Exploration focuses on mean. 5 Minute Preview
Correlation last revised: 6/14/2022
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote