Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (CAN)
  • Quebec Standards
  • Science: Cycle 2, Year 2 (Secondary 4) Env. Sci. (General)

Quebec - Science: Cycle 2, Year 2 (Secondary 4) Env. Sci. (General)

Progression of Learning | Adopted: 2011

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.

MW: : The Material World


MW.A: : Properties

MW.A.3: : Properties of solutions

MW.A.3.f: : Strength of electrolytes

MW.A.3.f.i: : Qualitatively speaking, associates the strength of an electrolyte with its degree of dissociation

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B: : Changes

MW.B.3: : Chemical changes

MW.B.3.e: : Combustion

MW.B.3.e.ii: : Explains a combustion reaction using the fire triangle

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.3.i: : Types of bonds

MW.B.3.i.i: : Covalent

MW.B.3.i.i.1: : Defines a covalent bond as a bond resulting from a sharing of electrons

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.3.i.i.2: : Makes a schematic representation of a covalent bond

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.3.i.i.3: : Identifies molecules that feature a covalent bond (e.g. N2, CO2)

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.3.i.ii: : Ionic

MW.B.3.i.ii.1: : Defines an ionic bond as a bond resulting from the gain or loss of electrons

Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.3.i.ii.2: : Makes a schematic representation of an ionic bond

Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.3.l: : Stoichiometry

MW.B.3.l.i: : Determines the quantities of reactants or products using stoichiometric calculations (gram or mole)

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Limiting Reactants

Limiting Reactants

Explore the concepts of limiting reactants, excess reactants, and theoretical yield in a chemical reaction. Select one of two different reactions, choose the number of molecules of each reactant, and then observe the products created and the reactants left over. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Stoichiometry

Stoichiometry

Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.3.m: : Endothermic and exothermic reactions

MW.B.3.m.i: : Distinguishes an endothermic reaction from an exothermic reaction according to perceptible signs (e.g. temperature variations, emission of light)

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.4: : Nuclear changes

MW.B.4.a: : Nuclear stability

MW.B.4.a.i: : Explains nuclear stability as the case where the nucleus of the atom is held together by an optimal number of neutrons

Screenshot of Nuclear Decay

Nuclear Decay

Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.4.c: : Fission and fusion

MW.B.4.c.i: : Distinguishes nuclear fission from nuclear fusion

Screenshot of Nuclear Reactions

Nuclear Reactions

Explore examples of nuclear fusion and fission reactions. Follow the steps of the proton-proton chain, CNO cycle, and fission of uranium-235. Write balanced nuclear equations for each step, and compare the energy produced in each process. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5: : Transformation of energy

MW.B.5.f: : Effective force

MW.B.5.f.ii: : Determines graphically the magnitude of the effective force in a given situation

Screenshot of Determining a Spring Constant

Determining a Spring Constant

Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5.g: : Relationship between work, force and distance traveled

MW.B.5.g.i: : Describes qualitatively the relationship between the work done, the force applied on a body and the distance traveled by the body

Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5.g.ii: : Applies the mathematical relationship between work, effective force and distance traveled (W = FΔd)

Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5.h: : Relationship between mass and weight

MW.B.5.h.i: : Describes qualitatively the relationship between mass and weight

Screenshot of Pendulum Clock

Pendulum Clock

Find the effect of length, mass, and angle on the period of a pendulum. The pendulum is attached to a clock that can be adjusted to tell time accurately. The clock can be located on Earth or Jupiter to determine the effect of gravity. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5.j: : Relationship between kinetic energy, mass and speed

MW.B.5.j.i: : Describes qualitatively the relationship between the kinetic energy of a body, its mass and its speed

Screenshot of Inclined Plane - Sliding Objects

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Moment of Inertia

Moment of Inertia

Place masses on a circular table and see how fast it spins when struck by a piston. Discover the relationships between angular velocity, mass, radius and moment of inertia for collections of point-masses, rings, disks, and more complex shapes. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5.j.ii: : Applies the mathematical relationship between kinetic energy, mass and speed (Ek = ½mv²)

Screenshot of Inclined Plane - Sliding Objects

Inclined Plane - Sliding Objects

Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Moment of Inertia

Moment of Inertia

Place masses on a circular table and see how fast it spins when struck by a piston. Discover the relationships between angular velocity, mass, radius and moment of inertia for collections of point-masses, rings, disks, and more complex shapes. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5.k: : Relationship between work and energy

MW.B.5.k.i: : Describes qualitatively the relationship between the work done on a body and the variation in energy within that body

Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.B.5.k.ii: : Applies the mathematical relationship between work and energy (W = ΔE)

Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.C: : Organization

MW.C.1: : Structure of matter

MW.C.1.i: : Neutron

MW.C.1.i.i: : Describes the position and electrical charge of the neutron in an atom

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.C.1.j: : Simplified atomic model

MW.C.1.j.i: : Represents an atom of a given element using the simplified atomic model

Screenshot of Bohr Model of Hydrogen

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Bohr Model: Introduction

Bohr Model: Introduction

Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.C.1.n: : Concept of the mole

MW.C.1.n.i: : Defines the mole as the unit of measure of the amount of a substance

Screenshot of Moles

Moles

Understand the definition of a mole and determine the Avogadro constant by adding atoms or formula units to a balance until the mass in grams is equal to the atomic or formula mass. Manipulate a conceptual model to understand how the number of particles, the number of moles, and the mass are related. Then use dimensional analysis to convert between particles, moles, and mass. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.C.1.n.ii: : Expresses an amount of a substance in moles

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Moles

Moles

Understand the definition of a mole and determine the Avogadro constant by adding atoms or formula units to a balance until the mass in grams is equal to the atomic or formula mass. Manipulate a conceptual model to understand how the number of particles, the number of moles, and the mass are related. Then use dimensional analysis to convert between particles, moles, and mass. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.C.2: : Periodic classification

MW.C.2.a: : Atomic number

MW.C.2.a.i: : Associates the atomic number of an element with the number of protons it has

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.C.2.b: : Isotopes

MW.C.2.b.i: : Defines isotopes as atoms of the same element whose nuclei have different numbers of neutrons and therefore different atomic masses

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Isotopes

Isotopes

Explore what isotopes are by adding protons and neutrons to the nucleus of an atom. Plot both stable and radioactive isotopes on a graph of neutrons vs. protons, and explore how the neutron:proton ratio of stable isotopes changes from lighter to heavier elements. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.C.2.d: : Periodicity of properties

MW.C.2.d.i: : Describes the periodicity of certain properties of elements (e.g. chemical reactivity, atomic radius, electronegativity)

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.F: : Electricity and electromagnetism

MW.F.1: : Electricity

MW.F.1.f: : Kirchhoff’s laws

MW.F.1.f.i: : Describes the distribution of current in various components of an electrical circuit

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.F.1.f.ii: : Determines the value of the current flowing in various components of a series or parallel circuit

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.F.1.f.iii: : Describes the distribution of the voltage across various components of an electrical circuit

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.F.1.f.iv: : Determines the value of the voltage across various components of a series or parallel circuit

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.F.1.f.v: : Determines the value of the equivalent resistance of a series or parallel circuit using Ohm’s law and Kirchhoff’s laws

Screenshot of Advanced Circuits

Advanced Circuits

Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Circuits

Circuits

Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview


Lesson Info
Launch Gizmo

MW.F.1.h: : Coulomb’s law

MW.F.1.h.i: : Applies the mathematical relationship between the electrical force, the magnitude of the electrical charges and the distance separating these charges (F = kq1 q2 /r²)

Screenshot of Coulomb Force (Static)

Coulomb Force (Static)

Drag two charged particles around and observe the Coulomb force between them as their positions change. The charge of each object can be adjusted, and the force is displayed both numerically and with vectors as the distance between the objects is altered. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pith Ball Lab

Pith Ball Lab

Pith balls with positive, negative, or no electrical charge are suspended from strings. The charge and mass of the pith balls can be adjusted, along with the length of the string, which will cause the pith balls to change position. Distances can be measured as variables are adjusted, and the forces (Coulomb and gravitational) acting on the balls can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

LW: : The Living World


LW.A: : Diversity of life forms

LW.A.1: : Ecology

LW.A.1.h: : Ecological footprint

LW.A.1.h.i: : Explains the concept of ecological footprint

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.1.i: : Ecotoxicology

LW.A.1.i.i: : Contaminant

LW.A.1.i.i.1: : Defines a contaminant as an agent that causes changes in the physical, chemical or biological properties of an environment or an organism

Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

LW.A.1.i.ii: : Bioaccumulation

LW.A.1.i.ii.2: : Explains bioaccumulation in food chains (biomagnification)

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.1.i.iv: : Toxicity threshold

LW.A.1.i.iv.2: : Describes factors that influence the toxicity of a contaminant (e.g. concentration, characteristics of the environment into which it is released, nature of the organisms with which it is in contact, duration of exposure)

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3: : Genetics

LW.A.3.a: : Heredity

LW.A.3.a.i: : Defines heredity

Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.b: : Gene

LW.A.3.b.i: : Defines a gene as being, in most cases, a DNA segment that carries the code for synthesizing one or more proteins

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Protein Synthesis - High School

Protein Synthesis - High School

As a pediatrician, students learn about genes and protein synthesis to try to help a baby girl named Lucy who has an immunodeficiency disease. Video Preview


Lesson Info
STEM Cases

LW.A.3.b.ii: : Describes the composition (nitrogen bases, sugar, phosphate) and the overall structure (bonding of bases on the double helix) of a DNA molecule

Screenshot of Building DNA

Building DNA

Construct a DNA molecule, examine its double-helix structure, and then go through the DNA replication process. Learn how each component fits into a DNA molecule, and see how a unique, self-replicating code can be created. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.c: : Character trait

LW.A.3.c.i: : Defines what an hereditary trait is

Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.c.ii: : Names hereditary traits in an individual or population

Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.e: : Homozygotes and heterozygotes

LW.A.3.e.i: : Defines a homozygote as an individual with two identical alleles for a particular character trait

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.e.ii: : Defines a heterozygote as an individual with two different alleles for a particular character trait

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.f: : Dominant and recessive

LW.A.3.f.i: : Describes the phenomena of dominant and recessive character traits

Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microevolution

Microevolution

Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.g: : Genotype and phenotype

LW.A.3.g.i: : Defines genotype

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.g.ii: : Defines phenotype

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.g.iii: : Describes an individual’s genotype and phenotype for a character trait (e.g. a bean with a Yellow phenotype may have a Yellow-Yellow genotype or a Yellow-Green genotype)

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 2 - Mystery Parent

Fast Plants® 2 - Mystery Parent

In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microevolution

Microevolution

Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview


Lesson Info
Launch Gizmo

LW.A.3.h: : Protein synthesis

LW.A.3.h.i: : Describes the role of DNA in protein synthesis

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Protein Synthesis - High School

Protein Synthesis - High School

As a pediatrician, students learn about genes and protein synthesis to try to help a baby girl named Lucy who has an immunodeficiency disease. Video Preview


Lesson Info
STEM Cases

LW.A.3.h.ii: : Explains the phenomena of transcription and translation of a strand of DNA

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Protein Synthesis - High School

Protein Synthesis - High School

As a pediatrician, students learn about genes and protein synthesis to try to help a baby girl named Lucy who has an immunodeficiency disease. Video Preview


Lesson Info
STEM Cases

ES: : The Earth and Space


ES.A: : Characteristics of the Earth

ES.A.3: : Hydrosphere

ES.A.3.g: : Eutrophication

ES.A.3.g.ii: : Explains how human activities accelerate the eutrophication of a body of natural water

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo

T: : Techniques


T.B: : Science

T.B.d: : Using measuring instruments

T.B.d.vii: : Uses vernier calipers appropriately

Screenshot of Triple Beam Balance

Triple Beam Balance

Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview


Lesson Info
Launch Gizmo

T.C: : Techniques common to Science and Technology

T.C.a: : Verifying the repeatability, accuracy and sensitivity of measuring instruments

T.C.a.i: : Takes the same measurement several times to check the repeatability of the instrument used

Screenshot of Triple Beam Balance

Triple Beam Balance

Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview


Lesson Info
Launch Gizmo

T.C.a.ii: : Carries out the required operations to ensure the accuracy of a measuring instrument (e.g. cleans and calibrates a balance, dries out a graduated cylinder, rinses and calibrates a pH-meter)

Screenshot of Triple Beam Balance

Triple Beam Balance

Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview


Lesson Info
Launch Gizmo

T.C.a.iii: : Chooses a measuring instrument by taking into account the sensitivity of the instrument (e.g. uses a 25-mL graduated cylinder rather than a 100-mL one to measure 18 mL of water)

Screenshot of Triple Beam Balance

Triple Beam Balance

Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap