- Home
- Find Gizmos
- Browse by Standard (CAN)
- New Brunswick Standards
- Science: 11th Grade Biology: College Preparation
Ontario - Science: 11th Grade Biology: College Preparation
Ontario Curriculum | Adopted: 2008
A: : Scientific Investigation Skills and Career Exploration
A1: : demonstrate scientific investigation skills (related to both inquiry and research) in the four areas of skills (initiating and planning, performing and recording, analysing and interpreting, and communicating);
A1.1: : formulate relevant scientific questions about observed relationships, ideas, problems, or issues, make informed predictions, and/or formulate educated hypotheses to focus inquiries or research
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Sight vs. Sound Reactions
Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview
A1.5: : conduct inquiries, controlling relevant variables, adapting or extending procedures as required, and using appropriate materials and equipment safely, accurately, and effectively, to collect observations and data
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
A1.6: : compile accurate data from laboratory and other sources, and organize and record the data, using appropriate formats, including tables, flow charts, graphs, and/or diagrams
Identifying Nutrients
Use a variety of real-world lab tests to analyze common food samples in order to determine if the food is a carbohydrate, a protein, or a lipid. Tests that can be performed include: Benedict, Lugol, Biuret, and Sudan Red. 5 Minute Preview
A1.8: : synthesize, analyse, interpret, and evaluate qualitative and/or quantitative data to determine whether the evidence supports or refutes the initial prediction or hypothesis and whether it is consistent with scientific theory; identify sources of bias and/or error; and suggest improvements to the inquiry to reduce the likelihood of error
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
Evolution - High School
Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview
A1.10: : draw conclusions based on inquiry results and research findings, and justify their conclusions with reference to scientific knowledge
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
A1.13: : express the results of any calculations involving data accurately and precisely, to the appropriate number of decimal places and significant figures
Unit Conversions 2 - Scientific Notation and Significant Digits
Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview
B: : Cellular Biology
B1: : evaluate the impact of environmental factors and medical technologies on certain cellular processes that occur in the human body;
B1.1: : evaluate the effectiveness of medical devices and technologies that are intended to aid cellular functions or processes (e.g., insulin infusion pump, chemotherapy)
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
B2: : investigate the structures and functions of cells, and the factors that influence cellular activity, using appropriate laboratory equipment and techniques;
B2.2: : investigate the effect of various qualitative factors (e.g., temperature) on the rate of diffusion of molecules across a plasma membrane
Osmosis - High School
As a veterinarian, students help a young calf, named Clark, who is having seizures. To determine the cause, the students fly into Clark's brain to learn about osmosis and apply their learning to save Clark. Video Preview
B2.4: : investigate the effects of various qualitative factors on the action of enzymes (e.g., the effect of temperature or pH on the breakdown of starch by salivary enzymes)
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
B3: : demonstrate an understanding of the basic processes of cellular biology.
B3.1: : describe the structures and functions of important biochemical compounds, including carbohydrates, proteins, enzymes, and lipids
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
Enzymes - High School
As a veterinary technician, students learn about enzymes to help a dog that has been eating normally but is losing a lot of weight. Video Preview
B3.2: : explain the roles of various organelles, including lysosomes, vacuoles, mitochondria, cell membranes, ribosomes, the endoplasmic reticulum, and Golgi bodies, in the processes of digestion, cellular respiration, and protein synthesis
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
RNA and Protein Synthesis
Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview
Cell Respiration - High School
As a medical toxicologist, students learn about cell respiration to save the life of a CIA agent that has been poisoned. Video Preview
B3.3: : explain the chemical changes and energy transformations associated with the process of cellular respiration, and compare the reactants (i.e., glucose, oxygen) to the products (i.e., water, carbon dioxide, ATP)
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
B3.4: : explain the importance of various cellular processes in human systems (e.g., enzymes act as biological catalysts to regulate chemical processes in the cells of the digestive system)
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
C: : Microbiology
C3: : demonstrate an understanding of the diversity of microorganisms and the relationships that exist between them.
C3.1: : describe the anatomy and morphology of various groups of microorganisms (e.g., eukaryotes, prokaryotes, viruses)
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
Virus Lytic Cycle
Release a lytic virus in a group of cells and observe how cells are infected over time and eventually destroyed. Data related to the number of healthy cells, infected cells, and viruses can be recorded over time to determine the time required for the virus to mature within a cell. 5 Minute Preview
C3.4: : explain the different methods of reproduction in various types of bacteria, viruses, and fungi
Virus Lytic Cycle
Release a lytic virus in a group of cells and observe how cells are infected over time and eventually destroyed. Data related to the number of healthy cells, infected cells, and viruses can be recorded over time to determine the time required for the virus to mature within a cell. 5 Minute Preview
D: : Genetics
D1: : evaluate some social, ethical, and environmental implications of genetic research and related technologies;
D1.1: : evaluate, on the basis of research, some of the social and ethical implications of genetic research and reproductive technologies (e.g., sex selection, harvesting umbilical cord cells)
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
D2: : investigate the process of meiosis, and analyse data related to the laws of heredity;
D2.1: : use appropriate terminology related to genetics, including, but not limited to: spindle, haploid, diploid, heterozygous, homozygous, hemophilia, gamete, ultraviolet radiation, carcinogen, cancer, trisomy, somatic cell, and zygote
Chicken Genetics
Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview
Hardy-Weinberg Equilibrium
Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview
Meowsis - High School
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview
D2.3: : solve basic problems in genetics that involve monohybrid crosses, using the Punnett square method
Hardy-Weinberg Equilibrium
Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview
D2.4: : compile and analyse qualitative and quantitative data, through laboratory inquiry or computer simulation, on monohybrid crosses, and communicate the results (e.g., record data obtained while performing a “virtual fly” lab, and analyse the results to create a karyotype chart)
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview
D3: : demonstrate an understanding of the process of meiosis, and explain the role of genes in the transmission of hereditary characteristics.
D3.2: : explain how the concepts of DNA, genes, chromosomes, alleles, mitosis, and meiosis account for the transmission of hereditary characteristics from generation to generation
DNA Analysis
Scan the DNA of frogs to produce DNA sequences. Use the DNA sequences to identify possible identical twins and to determine which sections of DNA code for skin color, eye color, and the presence or absence of spots. 5 Minute Preview
Hardy-Weinberg Equilibrium
Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
Meowsis - High School
As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview
D3.3: : explain the concepts of genotype, phenotype, dominance, recessiveness, and sex linkage
Chicken Genetics
Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview
Fast Plants® 2 - Mystery Parent
In this follow-up to Fast Plants® 1 - Growth and Genetics, continue to explore inheritance of traits in Wisconsin Fast Plants. Infer the genotype of a "mystery P2 parent" of a set of Fast Plants based on the traits of the P1, F1, and F2 plants. Then create designer Fast Plants by selectively breeding plants with desired traits. 5 Minute Preview
Hardy-Weinberg Equilibrium
Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
Microevolution
Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview
D3.4: : describe some genetic disorders that are caused by chromosomal abnormalities (e.g., non-disjunction) or other genetic mutations
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
E: : Anatomy of Mammals
E3: : demonstrate an understanding of the structure, function, and interactions of the circulatory, digestive, and respiratory systems of mammals.
E3.1: : describe the anatomy and physiology of the circulatory system (including the atrium, ventricles, valves, aorta, pulmonary artery, vena cava, capillaries, veins, arteries, blood cells, and platelets), the mechanisms of blood pressure, and the function of the spleen
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
E3.3: : describe the anatomy and physiology of the digestive system (including the mouth, epiglottis, esophagus, stomach, intestines, liver, and pancreas), the mechanisms of peristalsis, absorption, and mechanical and chemical digestion, and the function of the kidneys
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
E3.4: : explain some of the mechanisms of interaction between a mammal’s different body systems (e.g., the exchange of oxygen and carbon dioxide between the respiratory and circulatory systems)
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
F: : Plants in the Natural Environment
F1: : analyse the roles of plants in ecosystems, and assess the impact of human activities on the balance of plants within those ecosystems;
F1.1: : analyse, on the basis of research, and report on ways in which plants can be used to sustain ecosystems
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
F1.2: : assess the positive and negative impact of human activities on the natural balance of plants (e.g., crop rotation, the use of fertilizers and herbicides, the introduction of new species)
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
F2: : investigate some of the factors that affect plant growth;
F2.1: : use appropriate terminology related to plants in the environment, including, but not limited to: xylem, phloem, chloroplast, pistil, stamen, nitrogen fixation, and tropism
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
F2.2: : investigate various techniques of plant propagation (e.g., leaf cutting, stem cutting, root cutting, seed germination, traditional Aboriginal practices)
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended. 5 Minute Preview
F3: : demonstrate an understanding of the structure and physiology of plants and their role in the natural environment.
F3.2: : explain the chemical changes and energy transformations associated with the process of photosynthesis, and compare the reactants (i.e., carbon dioxide, radiant energy, water) to the products (i.e., glucose, oxygen)
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote