Connecticut - Science: 8th Grade
Grade Level Concepts | Adopted: 2010
8.1: : An object’s inertia causes it to continue to move the way it is moving unless it is acted upon by a force.
8.1.a: : The motion of an object can be described by its position, direction of motion and speed.
8.1.a.1: : An object is said to be in motion when its position changes in relation to a point of reference. An object’s motion can be described and represented graphically according to its position, direction of motion, and speed.
Distance-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Free Fall Tower
Recreate Galileo's famous experiment by dropping objects off the Tower of Pisa. You can drop ping pong balls, golf balls, soccer balls or watermelons. Objects can be dropped in air or no air, with or without a parachute. The speed of each object is shown on a speedometer and a graph. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
8.1.a.2: : Speed describes the change in an object’s position over a period of time, and is measured in units such as meters per second or miles per hour. Velocity takes into account an object’s speed and the direction of its motion.
Measuring Motion
Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest? 5 Minute Preview
8.1.a.3: : Average speed takes into account the different speeds at which an object moves over a period of time. Average speed is calculated by dividing the total distance traveled by the change in time, regardless of any changes in motion or direction during its travel.
Distance-Time and Velocity-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
8.1.a.4: : Motion of objects can be represented on a distance vs. time line graph, with distance traveled as the vertical (“y”) axis and time as the horizontal (“x”) axis. The slope (steepness) at any point of this line depends on the instantaneous speed of the moving object. A straight horizontal line indicates an object at rest.
Distance-Time and Velocity-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
8.1.b: : An unbalanced force acting on an object changes its speed and/or direction of motion.
8.1.b.1: : For an object’s motion to change, a force must be applied over a distance. The change in motion due to this force is acceleration. Acceleration describes the change in an object’s velocity over time.
Free Fall Tower
Recreate Galileo's famous experiment by dropping objects off the Tower of Pisa. You can drop ping pong balls, golf balls, soccer balls or watermelons. Objects can be dropped in air or no air, with or without a parachute. The speed of each object is shown on a speedometer and a graph. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
8.1.c: : Objects moving in circles must experience force acting toward the center.
8.1.c.2: : Without a net center-pulling (centripetal) force, objects will continue to move in a straight line in a constant direction.
Uniform Circular Motion
Measure the position, velocity, and acceleration (both components and magnitude) of an object undergoing circular motion. The radius and velocity of the object can be controlled, along with the mass of the object. The forces acting on the object also can be recorded. 5 Minute Preview
8.1.c.3: : Objects in orbit around a larger body maintain their orbits due to the center-pulling gravitational pull of the larger body.
Gravitational Force
Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview
8.2: : Reproduction is a characteristic of living systems and it is essential for the continuation of every species.
8.2.a: : Heredity is the passage of genetic information from one generation to another.
8.2.a.5: : Most multicellular organisms reproduce by sexual reproduction, in which new cells are produced by the combination of two germ cells (gametes). During meiosis, matching chromosomes in each pair separate from each other so that each germ cell contains only half of the chromosomes of the original cell.
Cell Division
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
8.2.a.10: : A segment of DNA that holds the information for a specific trait is called a gene. Each chromosome in a pair carries the same genes in the same place, but there are different versions of each gene.
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
8.2.b: : Some of the characteristics of an organism are inherited and some result from interactions with the environment.
8.2.b.2: : Most human traits are inherited from parents, but some are the result of environmental conditions. For example, eating and exercising habits may affect the body mass and shape of individuals in the same family.
Inheritance
Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released. 5 Minute Preview
Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
8.3: : The solar system is composed of planets and other objects that orbit the sun.
8.3.a: : Gravity is the force that governs the motions of objects in the solar system.
8.3.a.1: : Earth is part of a system of celestial bodies that are grouped together around a central star, the Sun. This system includes objects of different masses and composition such as planets, moons, asteroids, minor planets, and comets. These objects move in predictable paths determined by gravity.
Comparing Earth and Venus
Observe the motions of Venus and Earth as the planets move around the Sun. Measure the length of a day and a year on Earth and Venus, and compare the length of a solar day to the length of a sidereal day. 5 Minute Preview
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
Solar System Explorer
Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified. 5 Minute Preview
8.3.a.2: : Gravity is a force of attraction between two objects. The strength of gravitational force depends on the total mass of the two objects and the distance between them. The greater the total mass, the greater the force of gravity. The greater the distance between two objects, the less the force of gravity.
Gravitational Force
Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview
8.3.a.3: : The difference between an object’s mass and its weight is explained by gravity. Mass is the measure of the amount of matter in an object; weight is the force of gravity between an object and the celestial body it is on. Bodies in the solar system have different masses; therefore the same object has a different weight on each celestial body.
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
8.3.a.4: : Objects in the solar system are held in their predictable paths by the center-pulling gravitational attraction of the very massive sun. The interaction of the center-pulling force of gravity with a moving object’s inertia (tendency to keep moving) keeps a less massive object (e.g., a planet, an asteroid or a moon) in circular motion (revolution) around a more massive object.
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
8.3.b: : The motion of the earth and moon relative to the sun causes daily, monthly and yearly cycles on the earth.
8.3.b.1: : Earth rotates around an axis or rotation, a line going through the center of the earth from the north pole to the south pole. The tilt of Earth’s axis relative to its orbital path, combined with the spherical shape of the earth, cause differences in the amount and intensity of the sun’s light striking different latitudes of the earth.
Seasons Around the World
Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview
Seasons: Earth, Moon, and Sun
Observe the motions of the Earth, Moon and Sun in three dimensions to explain Sunrise and Sunset, and to see how we define a day, a month, and a year. Compare times of Sunrise and Sunset for different dates and locations. Relate shadows to the position of the Sun in the sky, and relate shadows to compass directions. 5 Minute Preview
Seasons: Why do we have them?
Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview
8.3.b.2: : Earth experiences seasons in northern and southern hemispheres due to the tilt of the earth on its axis and the resulting angle of the sunlight striking Earth’s surface at different points along its 365-day revolution period. Earth’s tilt causes seasonal differences in the height of the perceived path of the sun and the number of hours of sunlight. Seasons are not related to a change in distance between the earth and the sun, since that distance changes very little. Planets without a tilt of axis will experience no seasons in spite of the revolution.
Seasons Around the World
Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview
Seasons in 3D
Gain an understanding of the causes of seasons by observing Earth as it orbits the Sun in three dimensions. Observe the path of the Sun across the sky on any date and from any location. Create graphs of solar intensity and day length, and use collected data to describe and explain seasonal changes. 5 Minute Preview
Seasons: Why do we have them?
Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview
8.3.b.5: : Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the moon, the sun and the rotation of the earth. The times and amplitude of the tides at the coast are influenced, in part, by the alignment of the sun and moon.
Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote