- Home
- Find Gizmos
- Browse by Standard (USA)
- Georgia Standards
- Science: 8th Grade
Connecticut - Science: 8th Grade
Grade Level Expectations | Adopted: 2010
8.1: : An object’s inertia causes it to continue to move the way it is moving unless it is acted upon by a force.
8.1.2: : Calculate the average speed of an object and distinguish between instantaneous speed and average speed of an object.
Distance-Time and Velocity-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview
8.1.3: : Create and interpret distance-time graphs for objects moving at constant and nonconstant speeds.
Distance-Time Graphs - Metric
Create a graph of a runner's position versus time and watch the runner complete a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Free Fall Tower
Recreate Galileo's famous experiment by dropping objects off the Tower of Pisa. You can drop ping pong balls, golf balls, soccer balls or watermelons. Objects can be dropped in air or no air, with or without a parachute. The speed of each object is shown on a speedometer and a graph. 5 Minute Preview
8.1.5: : Investigate and demonstrate how unbalanced forces cause acceleration (change in speed and/or direction of an object’s motion).
Free Fall Tower
Recreate Galileo's famous experiment by dropping objects off the Tower of Pisa. You can drop ping pong balls, golf balls, soccer balls or watermelons. Objects can be dropped in air or no air, with or without a parachute. The speed of each object is shown on a speedometer and a graph. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
8.1.6: : Assess in writing the relationship between an object’s mass and its inertia when at rest and in motion.
Fan Cart Physics
Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview
8.1.7: : Express mathematically how the mass of an object and the force acting on it affect its acceleration.
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
8.1.8: : Design and conduct an experiment to determine how gravity and friction (air resistance) affect a falling object.
Free Fall Tower
Recreate Galileo's famous experiment by dropping objects off the Tower of Pisa. You can drop ping pong balls, golf balls, soccer balls or watermelons. Objects can be dropped in air or no air, with or without a parachute. The speed of each object is shown on a speedometer and a graph. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
8.2: : Reproduction is a characteristic of living systems and it is essential for the continuation of every species.
8.2.1: : Relate the continued existence of any species to its successful reproduction and explain in writing the factors that contribute to successful reproduction.
Evolution: Mutation and Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview
Rainfall and Bird Beaks - Metric
Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview
8.2.2: : Describe the structure, location and function of chromosomes, genes and DNA and how they relate to each other in the living cell.
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
8.2.3: : Illustrate and chart the purpose, cell type (somatic and germ) and resulting chromosome count during cell division in mitosis and meiosis.
Cell Division
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview
8.2.7: : Demonstrate the relationship of corresponding genes on pairs of chromosomes to traits inherited by offspring.
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview
8.3: : The solar system is composed of planets and other objects that orbit the sun.
8.3.1: : Describe in writing how gravitational attraction and the inertia of objects in the solar system keep them on a predictable elliptical pathway.
Gravity Pitch
Imagine a gigantic pitcher standing on Earth, ready to hurl a huge baseball. What will happen as the ball is thrown harder and harder? Find out with the Gravity Pitch Gizmo. Observe the path of the ball when it is thrown at different velocities. Throw the ball on different planets to see how each planet's gravity affects the ball. 5 Minute Preview
8.3.2: : Distinguish between rotation of Earth on its axis and its elliptical revolution around the sun.
Seasons Around the World
Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview
Seasons: Earth, Moon, and Sun
Observe the motions of the Earth, Moon and Sun in three dimensions to explain Sunrise and Sunset, and to see how we define a day, a month, and a year. Compare times of Sunrise and Sunset for different dates and locations. Relate shadows to the position of the Sun in the sky, and relate shadows to compass directions. 5 Minute Preview
Seasons: Why do we have them?
Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview
8.3.3: : Use models to explain how Earth’s revolution around the sun affects changes in daylight hours and seasonal temperatures.
Comparing Earth and Venus
Observe the motions of Venus and Earth as the planets move around the Sun. Measure the length of a day and a year on Earth and Venus, and compare the length of a solar day to the length of a sidereal day. 5 Minute Preview
Seasons Around the World
Use a three dimensional view of the Earth, Moon and Sun to explore seasonal changes at a variety of locations. Strengthen your knowledge of global climate patterns by comparing solar energy input at the Poles to the Equator. Manipulate Earth's axis to increase or diminish seasonal changes. 5 Minute Preview
Seasons in 3D
Gain an understanding of the causes of seasons by observing Earth as it orbits the Sun in three dimensions. Observe the path of the Sun across the sky on any date and from any location. Create graphs of solar intensity and day length, and use collected data to describe and explain seasonal changes. 5 Minute Preview
Seasons: Why do we have them?
Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview
8.3.6: : Use a model to demonstrate the phases of the moon relative to the position of the sun, Earth and moon.
2D Eclipse
Manipulate the position of the Moon to model solar and lunar eclipses. View Earth's shadow, the Moon's shadow, or both. Observe the Moon and Sun from Earth during a partial and total eclipse. The sizes of the three bodies and the Earth-Moon distance can be adjusted. 5 Minute Preview
3D Eclipse
Observe the motions of the Earth, Moon and Sun in three dimensions to investigate the causes and frequency of eclipses. Observe Earth's shadow crossing the Moon during a lunar eclipse, and the path of the Moon's shadow across Earth's surface during a solar eclipse. The angle of the Moon's orbit can be adjusted, as well as the distance of the Moon from the Earth. 5 Minute Preview
Moonrise, Moonset, and Phases
Gain an understanding of moonrise and moonset times by observing the relative positions of Earth and the Moon along with a view of the Moon from Earth. A line shows the horizon for a person standing on Earth so that moonrise and moonset times can be determined. 5 Minute Preview
Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
8.3.7: : Develop a model or illustration to show the relative positions of the earth, sun and moon during a lunar and solar eclipse and explain how those positions influence the view from Earth.
2D Eclipse
Manipulate the position of the Moon to model solar and lunar eclipses. View Earth's shadow, the Moon's shadow, or both. Observe the Moon and Sun from Earth during a partial and total eclipse. The sizes of the three bodies and the Earth-Moon distance can be adjusted. 5 Minute Preview
3D Eclipse
Observe the motions of the Earth, Moon and Sun in three dimensions to investigate the causes and frequency of eclipses. Observe Earth's shadow crossing the Moon during a lunar eclipse, and the path of the Moon's shadow across Earth's surface during a solar eclipse. The angle of the Moon's orbit can be adjusted, as well as the distance of the Moon from the Earth. 5 Minute Preview
Moonrise, Moonset, and Phases
Gain an understanding of moonrise and moonset times by observing the relative positions of Earth and the Moon along with a view of the Moon from Earth. A line shows the horizon for a person standing on Earth so that moonrise and moonset times can be determined. 5 Minute Preview
Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
8.3.8: : Describe factors affecting tidal changes and analyze tidal change data for Long Island Sound.
Tides - Metric
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the position of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote