- Home
- Find Gizmos
- Browse by Core Curriculum
- It's About Time Textbooks
- InterActions in Physical Science (First Edition) (2006)
InterActions in Physical Science (First Edition) (2006)
A: Interactions and Energy
A.1: Building a Foundation
A.1.1: Science Experiments
Period of a Pendulum
Practice measuring the period of a pendulum. Perform experiments to determine how mass, length, gravitational acceleration, and angle affect the period of a pendulum. 5 Minute Preview
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
A.1.2: Introducing Interactions
Circuits
Build electrical circuits using batteries, light bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison. 5 Minute Preview
Magnetic Induction
Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview
A.1.3: Interactions and Properties
Archimedes' Principle
Place weights into a boat and see how far the boat sinks into a tank of liquid. The depth of the boat can be measured, as well as the amount of liquid displaced. The dimensions of the boat and the density of the liquid can be adjusted. See how much weight the boat can hold before it sinks to the bottom! 5 Minute Preview
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement. 5 Minute Preview
A.2: Interactions and Energy
A.2.1: Energy Description of Interactions
Distance-Time Graphs
Create a graph of a runner's position versus time and watch the runner complete a 40-yard dash based on the graph you made. Notice the connection between the slope of the line and the speed of the runner. What will the runner do if the slope of the line is zero? What if the slope is negative? Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. 5 Minute Preview
Earthquakes 2 - Determination of Epicenter
Locate the epicenter of an earthquake by analyzing seismic data from three recording stations. Measure difference in P- and S-wave arrival times, then use data from the Earthquakes 1 - Recording Station Gizmo to find the distance of the epicenter from each station. 5 Minute Preview
Longitudinal Waves
Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview
A.2.2: Mechanical Interactions and Energy
Air Track
Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
B: Interactions, Forces and Conservation
B.3: Interactions and Forces
B.3.1: Mechanical Interactions and Forces
Atwood Machine
Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview
Fan Cart Physics
Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview
Inclined Plane - Simple Machine
Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
B.3.2: Gravitational Interactions
Archimedes' Principle
Place weights into a boat and see how far the boat sinks into a tank of liquid. The depth of the boat can be measured, as well as the amount of liquid displaced. The dimensions of the boat and the density of the liquid can be adjusted. See how much weight the boat can hold before it sinks to the bottom! 5 Minute Preview
Atwood Machine
Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview
Free-Fall Laboratory
Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview
Gravitational Force
Drag two objects around and observe the gravitational force between them as their positions change. The mass of each object can be adjusted, and the gravitational force is displayed both as vectors and numerically. 5 Minute Preview
Orbital Motion - Kepler's Laws
Learn Kepler's three laws of planetary motion by examining the orbit of a planet around a star. The initial position, velocity, and mass of the planet can be varied as well as the mass of the star. The foci and centers of orbits can be displayed and compared to the location of the star. The area swept out by the planet in a given time period can be measured, and data on orbital radii and periods can be plotted in several ways. 5 Minute Preview
Potential Energy on Shelves
Compare the potential energy of several objects when you place them on shelves of different heights. Learn that two objects at different heights can have the same potential energy, while two objects at the same height can have different potential energies. 5 Minute Preview
Feed the Monkey (Projectile Motion)
Fire a banana cannon at a monkey in a tree. The monkey drops from the tree at the moment the banana is fired from the cannon. Determine where to aim the cannon so the monkey catches the banana. The position of the cannon, launch angle and initial velocity of the banana can be varied. Students can observe the velocity vectors and the paths of the monkey and banana. 5 Minute Preview
B.4: Interactions and Conservation
B.4.1: Mass Conservation
Density Experiment: Slice and Dice
Drop a chunk of material in a beaker of water and observe whether it sinks or floats. Cut the chunk into smaller pieces of any size, and observe what happens as they are dropped in the beaker. The mass and volume of each chunk can be measured to gain a clear understanding of density and buoyancy. 5 Minute Preview
B.4.2: Energy Conservation
Additive Colors
Control the intensity of red, green, and blue spotlights. Additive colors can be observed where the spotlights overlap. The RGB value of any point can be measured. Just about any color can be created by mixing varying amounts of red, green, and blue light. 5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
H-R Diagram
A collection of stars visible from Earth can be arranged and classified based on their color, temperature, luminosity, radius, and mass. This can be done using one or two-dimensional plots, including a Hertzsprung-Russell diagram of luminosity vs. temperature. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
Herschel Experiment
Shine sunlight through a prism and use a thermometer to measure the temperature in different regions of the spectrum. The thermometer can be dragged through the visible spectrum and beyond. This recreates the experiment of William Herschel that led to the discovery of infrared radiation in 1800. 5 Minute Preview
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview
Ray Tracing (Lenses)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image. 5 Minute Preview
Refraction
Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview
Star Spectra
Analyze the spectra of a variety of stars. Determine the elements that are represented in each spectrum, and use this information to infer the temperature and classification of the star. Look for unusual features such as redshifted stars, nebulae, and stars with large planets. 5 Minute Preview
Subtractive Colors
Move spots of yellow, cyan, and magenta pigment on a white surface. As the colors overlap, other colors can be seen due to color subtraction. The color of most things you see--such as cars, leaves, paintings, houses, and clothes--are due to color subtraction. The intensity of the cyan, magenta, and yellow can be adjusted, and the RGB value at any location can be measured. 5 Minute Preview
Temperature and Particle Motion
Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared. 5 Minute Preview
C: Interactions of Materials
C.5: Materials and Their Interactions
Mystery Powder Analysis
Perform multiple experiments using several common powders such as corn starch, baking powder, baking soda, salt, and gelatin. The results of the research on the known powders can then be used to analyze several unknowns using the scientific method. The unknowns can be a single powder or a combination of the known powders. 5 Minute Preview
pH Analysis
Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview
C.6: Physical Interactions and Phases
Boyle's Law and Charles's Law
Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles's Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source. Gay-Lussac's law relating pressure to temperature can also be explored by keeping the volume constant. 5 Minute Preview
Element Builder
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview
Nuclear Decay
Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview
C.7: Chemical Interactions
Balancing Chemical Equations
Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview
Covalent Bonds
Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview
Ionic Bonds
Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote