- Home
- Find Gizmos
- Browse by Standard (CAN)
- New Hampshire Standards
- Science: Science 14
Alberta - Science: Science 14
Alberta Curriculum and Program of Studies | Adopted: 2014
A: : Investigating Properties of Matter
1.1: : Outcomes for Science, Technology and Society (STS) and Knowledge
A.1: : Students will: Classify various forms of matter, including commonly used household substances, on the basis of their properties, and relate these properties to their safe use, storage and disposal
A.1.3: : compare and contrast the properties of pure substances and mixtures (e.g., brass and zinc, stainless steel and iron, acetic acid and vinegar, pure water and salt water), and relate this information to practical applications (e.g., salting icy roads, adding antifreeze to car radiators)
Freezing Point of Salt Water
Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview
A.1.6: : apply the particle model of matter to explain the physical properties of the phases of matter
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview
A.2: : Students will: Describe solutions and solubility, solutes and solvents; and then describe how these concepts are applied to the production of prepared foods and other useful materials
A.2.2: : define, operationally, solute, solvent, solution and solubility; and express concentration in terms of mass per volume
Solubility and Temperature
Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview
A.2.3: : provide examples of the effect of temperature change on solubility, and explain this effect on the basis of the particle model of matter (e.g., concentration of brines for pickling and syrups for canning)
Solubility and Temperature
Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview
A.2.6: : identify acid and base solutions in the home, job site and laboratory (e.g., vinegar, soda pop, shampoo, battery acid, household ammonia, antacids, dish soap, hydrochloric acid, sodium hydroxide) on the basis of their general properties; i.e., they conduct electricity, change colour of acid/base indicators and neutralize one another
pH Analysis
Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview
pH Analysis: Quad Color Indicator
Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview
A.2.7: : describe, in general terms, the pH scale as an indicator of acidity or basicity; i.e., a pH of less than 7 indicates an acid, a pH of 7 indicates a neutral solution, and a pH of greater than 7 indicates a base
pH Analysis
Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview
pH Analysis: Quad Color Indicator
Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview
A.3: : Students will: Describe the properties of elements and compounds, and use the periodic table to identify trends in properties
A.3.2: : use the periodic table to locate names and properties of elements
Periodic Trends
Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview
1.2: : Skill Outcomes
A.PR: : Performing and Recording
A.PR.1: : Students will: Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
A.PR.1.1: : carry out procedures, controlling the major variables (e.g., investigate properties, such as physical appearance, density, conductivity, solubility, magnetism and melting point, of sample materials in the laboratory and in a reference source, and tabulate the results)
Freezing Point of Salt Water
Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview
Solubility and Temperature
Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview
A.PR.1.2: : organize data, using a format that is appropriate to the task or experiment (e.g., prepare a chart that describes the properties of common household solutions and lists procedures for their safe use, storage and disposal)
Freezing Point of Salt Water
Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview
Solubility and Temperature
Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview
pH Analysis
Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview
A.AI: : Analyzing and Interpreting
A.AI.1: : Students will: Analyze qualitative and quantitative data, and develop and assess possible explanations
A.AI.1.3: : interpret patterns and trends in data, and infer and explain relationships among the variables (e.g., use data collected by computer in the laboratory or by other means to demonstrate that the solubility of substances varies with the nature of the solute and the solvent)
Periodic Trends
Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview
Solubility and Temperature
Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview
A.AI.1.4: : identify potential sources of error in the measurement (e.g., analyze the use of colour to estimate the concentration of a solution)
pH Analysis
Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview
A.AI.1.5: : state a conclusion based on experimental data, and explain how evidence gathered supports or refutes the initial hypothesis (e.g., observe the chemical and physical properties of metals and nonmetals, and explain how these observations support the classification system for metals, nonmetals and metalloids)
Periodic Trends
Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview
A.CT: : Communication and Teamwork
A.CT.1: : Students will: Work collaboratively on problems; and use appropriate language and formats to communicate ideas, procedures and results
A.CT.1.2: : communicate questions, ideas, intentions, plans and results, using lists, notes in point form, sentences, data tables, graphs, drawings, oral language and other means (e.g., write a paragraph to describe how chemicals are used at home and in industry)
Freezing Point of Salt Water
Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
B: : Understanding Energy Transfer Technologies
2.1: : Outcomes for Science, Technology and Society (STS) and Knowledge
B.1: : Students will: Describe how natural and technological cooling and heating systems are based upon the transfer of thermal energy (heat) from hot to cold objects
B.1.2: : describe the three ways; i.e., radiation, conduction and convection, that thermal energy is transferred from hot to cold objects
Conduction and Convection
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview
Convection Cells
Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
B.1.4: : describe the role of convection and conduction in distributing heat in natural and technological systems (e.g., sea and land breezes, convection ovens, metal pipes, cast-iron pots and pans)
Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Conduction and Convection
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview
Convection Cells
Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview
Heat Transfer by Conduction
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview
B.2: : Students will: Explain the functioning of common methods and devices designed to control the transfer of thermal energy
B.2.3: : describe the variation in absorption/loss of heat (specific heat capacity) of a substance being heated or cooled, by manipulating variables that include the amount and type of material (e.g., motor oil, cooking oil, water)
Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview
B.3: : Students will: Describe and compare simple machines as devices that transfer energy and multiply forces or distances
B.3.1: : analyze and describe simple machines as devices that transfer energy (e.g., screws, ramps, hammers, hockey sticks, tennis rackets)
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
B.3.2: : identify the joule and the newton metre as the units of energy and work in the Système international (SI) units
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
B.3.3: : analyze and describe simple machines as either force multipliers or distance multipliers
Levers
Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
Wheel and Axle
Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview
B.3.4: : describe all simple machines as having an input force, an output force and a fulcrum (e.g., pulleys, doorknobs, winches)
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
2.2: : Skill Outcomes
B.IP: : Initiating and Planning
B.IP.1: : Students will: Ask questions about relationships between and among observable variables, and plan investigations to address those questions
B.IP.1.4: : state a prediction and a hypothesis based on background information or on an observed pattern of events (e.g., hypothesize the relationship between the rate of thermal conduction in different materials and their insulative properties)
Conduction and Convection
Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview
B.PR: : Performing and Recording
B.PR.1: : Students will: Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
B.PR.1.2: : use instruments effectively and accurately for collecting data (e.g., collect data on daily household energy consumption by recording electricity and gas meter readings over a two-week period; organize, display and analyze the data)
Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview
Convection Cells
Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview
Household Energy Usage
Explore the energy used by many household appliances, such as television sets, hair dryers, lights, computers, etc. Make estimates for how long each item is used on a daily basis to get an estimate for the total power consumed during a day, a week, a month, and a year, and how that relates to consumer costs and environmental impact. 5 Minute Preview
B.AI: : Analyzing and Interpreting
B.AI.1: : Students will: Analyze qualitative and quantitative data, and develop and assess possible explanations
B.AI.1.1: : interpret patterns and trends in data, and infer and explain relationships among the variables (e.g., suggest the reasons for daily fluctuations in domestic energy consumption)
Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview
Convection Cells
Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview
Wheel and Axle
Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview
B.AI.1.2: : calculate theoretical values of a variable (e.g., calculate energy transferred [work, W], force [F] or distance [d], when two quantities and the equation W = Fd are given; use SI units and unit analyses)
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
C: : Investigating Matter and Energy in Living Systems
3.1: : Outcomes for Science, Technology and Society (STS) and Knowledge
C.1: : Students will: Describe, in general terms, the exchange of matter by the digestive and circulatory systems, the functional relationship between the two systems and the need for a healthy diet and lifestyle
C.1.4: : describe, in general terms, the intake of matter and its processing by the digestive system (e.g., foods are broken down into molecules that are absorbed into the blood stream from the intestine; food intake leads to increased blood sugar and mineral levels)
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
C.1.5: : describe, in general terms, the role of the heart and lungs in the circulatory system and in the exchange and distribution of matter processed by the digestive system
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
C.2: : Students will: Describe disorders of the digestive and circulatory systems as imbalances induced by genetic, lifestyle and environmental factors
C.2.1: : describe, in general terms, how the digestive and circulatory systems interact to assist in the maintenance of balance (homeostasis) in the human organism
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
C.2.3: : explain that illness and possibly death may result when the body cannot accommodate major disturbances within a system; i.e., digestive, excretory or circulatory (e.g., ulcers, heart attacks)
Homeostasis - High School
In the role of a physician assistant, students help a young man, named Anthony, who has Type II diabetes and high blood pressure. Students must make a diagnosis and then must apply the principles of filtration and homeostasis to help Anthony. Video Preview
C.2.4: : analyze and explain, in general terms, a technology that is used to diagnose imbalances (e.g., endoscope, stethoscope) or to intervene and preserve balance (homeostasis) (e.g., kidney dialysis machine, pacemaker)
Homeostasis - High School
In the role of a physician assistant, students help a young man, named Anthony, who has Type II diabetes and high blood pressure. Students must make a diagnosis and then must apply the principles of filtration and homeostasis to help Anthony. Video Preview
C.3: : Students will: Describe, in general terms, the structure and function of plant and animal cell parts; and trace the development of the cell theory
C.3.2: : describe the structure of the major parts of plant and animal cells, including the cell membrane, nucleus, vacuole, mitochondrion, chloroplast and cell wall
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
C.4: : Students will: Identify and compare, in general terms, the life functions common to living systems, from cells to organ systems
C.4.1: : describe the relationship between photosynthesis and cellular respiration in terms of biological energy storage; i.e., capture of energy from the Sun in glucose during photosynthesis, and the release of energy from glucose during respiration
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Photosynthesis - High School
As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview
C.4.3: : identify organs and systems in plants and animals that carry out the above life functions
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
Frog Dissection
Use a scalpel, forceps, and pins to dissect realistic male and female frogs. Organs can be removed and placed into organ system diagrams. Once the dissections are complete, the frog organ systems can be compared. Zooming, rotating, and panning tools are available to examine the frog from any angle. 5 Minute Preview
C.4.4: : identify the major human organ systems that perform critical life functions; i.e., energy conversion, response to the environment, growth, reproduction, and conservation or dissipation of thermal energy
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
3.2: : Skill Outcomes
C.PR: : Performing and Recording
C.PR.1: : Students will: Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
C.PR.1.2: : estimate measurements (e.g., calculate the magnification from knowledge of the microscope)
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
C.PR.1.3: : use instruments effectively and accurately for collecting data (e.g., prepare wet mounts of tissue, and observe cellular structures specific to plant cells and animal cells; observe structures using photomicrographs or electron micrographs)
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
C.PR.1.4: : organize data, using a format that is appropriate to the task or experiment (e.g., determine the nutrient components in popular diets)
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview
C.AI: : Analyzing and Interpreting
C.AI.1: : Students will: Analyze qualitative and quantitative data, and develop and assess possible explanations
C.AI.1.1: : state a conclusion, based on experimental data, and explain how evidence gathered supports or refutes an initial idea (e.g., observe cytoplasmic streaming in the paramecium, and compare this method of matter distribution to that in multicellular living systems, such as the human organism; observe the feeding behaviour of paramecium, and compare this to the processes that occur in the human organism)
Homeostasis - High School
In the role of a physician assistant, students help a young man, named Anthony, who has Type II diabetes and high blood pressure. Students must make a diagnosis and then must apply the principles of filtration and homeostasis to help Anthony. Video Preview
D: : Investigating Matter and Energy in the Environment
4.1: : Outcomes for Science, Technology and Society (STS) and Knowledge
D.1: : Students will: Describe how the flow of matter in the biosphere is cyclical along characteristic pathways and can be disrupted by human activity
D.1.1: : explain the role of living systems in the cycling of matter in the biosphere (e.g., food chains)
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
D.1.4: : describe, in general terms, how water, carbon, oxygen and nitrogen are cycled through the biosphere
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
D.2: : Students will: Analyze a local ecosystem in terms of its biotic and abiotic components, and describe factors of the equilibrium
D.2.2: : define ecosystems in terms of biotic and abiotic factors (e.g., common plants and animals, latitude, altitude, topography)
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
D.2.3: : describe how various abiotic factors influence biodiversity in an ecosystem (e.g., climate, substrate, temperature, elevation)
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
D.2.4: : explain how biotic relationships can be explained in terms of the movement of matter and energy, using food chains, food webs and energy pyramids
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
D.2.5: : explain how various factors influence the size of populations; i.e., immigration and emigration, birth and death rates, food supply, predation, disease, reproductive rate, number of offspring produced, and climate change
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
Rabbit Population by Season
Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview
D.2.6: : describe how interactions among organisms limit populations (e.g., predation, parasitism, competition)
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
D.2.7: : assess the impact of the introduction of exotic species on a specific ecosystem or biome (e.g., purple loosestrife in western Canadian wetlands, English sparrows in North America, zebra mussels in the Great Lakes)
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
4.2: : Skill Outcomes
D.IP: : Initiating and Planning
D.IP.1: : Students will: Ask questions about relationships between and among observable variables, and plan investigations to address those questions
D.IP.1.1: : identify questions to investigate arising from practical problems and issues (e.g., develop questions related to recycling, ozone depletion or introduction of exotic species)
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
D.PR: : Performing and Recording
D.PR.1: : Students will: Conduct investigations into the relationships between and among observations, and gather and record qualitative and quantitative data
D.PR.1.1: : carry out procedures, controlling the major variables (e.g., perform quantitative experiments to demonstrate that cellular respiration releases some thermal energy)
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
D.PR.1.3: : organize data, using a format that is appropriate to the task or experiment (e.g., analyze the biotic and abiotic data collected in an ecosystem study, and present this information in a written or graphic format or in an oral presentation to peers)
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
D.PR.1.5: : use tools, technology and apparatus safely (e.g., use computer-based learning or other means to perform a field study on an aquatic or terrestrial ecosystem; measure, quantitatively, appropriate abiotic data—temperature, humidity, precipitation, light intensity, pH, hardness, dissolved oxygen content)
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
D.AI: : Analyzing and Interpreting
D.AI.1: : Students will: Analyze qualitative and quantitative data, and develop and assess possible explanations
D.AI.1.1: : compile and display data, by hand or computer, in a variety of formats, including diagrams, flow charts, tables, bar graphs, line graphs and scatterplots (e.g., analyze population growth curve graphs; communicate information on the flow of energy through the biosphere, using a diagram or flow chart)
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time. 5 Minute Preview
Rabbit Population by Season
Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview
Ecosystems - High School
As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
D.AI.1.3: : state a conclusion, based on experimental data; and explain how evidence gathered supports or refutes an initial idea (e.g., explain, on the basis of experimental evidence, how energy is stored in the form of starch in photosynthetic organisms)
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Nitrogen Cycle - High School
An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview
Correlation last revised: 9/9/2024
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote