Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (CAN)
  • Manitoba Standards
  • Science: 12th Grade Biology

Manitoba - Science: 12th Grade Biology

Manitoba Curriculum | Adopted: 2010

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.

1: : Genetics


1.B12-1: : Understanding Biological inheritance

1.1.1: : Principles of Inheritance

1.B12-1-01: : Outline Gregor Mendel’s principles of inheritance, stating their importance to the understanding of heredity.

Screenshot of Fast Plants<sup>®</sup> 1 - Growth and Genetics

Fast Plants® 1 - Growth and Genetics

Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

1.B12-1-02: : Explain what is meant by the terms heterozygous and homozygous.

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 1 - Growth and Genetics

Fast Plants® 1 - Growth and Genetics

Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview


Lesson Info
Launch Gizmo

1.B12-1-03: : Distinguish between genotype and phenotype, and use these terms appropriately when discussing the outcomes of genetic crosses.

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fast Plants<sup>®</sup> 1 - Growth and Genetics

Fast Plants® 1 - Growth and Genetics

Grow Wisconsin Fast Plants® in a simulated lab environment. Explore the life cycles of these plants and how their growth is influenced by light, water, and crowding. Practice pollinating the plants using bee sticks, then observe the traits of the offspring plants. Use Punnett squares to model the inheritance of genes for stem color and leaf color for these plants. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

1.1.3: : Atypical Inheritance

1.B12-1-05: : Describe examples of and solve problems involving the inheritance of phenotypic traits that do not follow a dominant-recessive pattern.

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

1.1.4: : Sex-Linked Inheritance

1.B12-1-07: : Describe examples of and solve problems involving sex-linked genes.

Screenshot of Human Karyotyping

Human Karyotyping

Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Meowsis - High School

Meowsis - High School

As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview


Lesson Info
STEM Cases

1.1.7: : Genetic Variability

1.B12-1-10: : Discuss the role of meiosis and sexual reproduction in producing genetic variability in offspring.

Screenshot of Meiosis

Meiosis

Explore how sex cells are produced by the process of meiosis. Compare meiosis in male and female germ cells, and use crossovers to increase the number of possible gamete genotypes. Using meiosis and crossovers, create "designer" fruit fly offspring with desired trait combinations. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Meowsis - High School

Meowsis - High School

As a geneticist in an animal hospital, students learn about genetic changes in meiosis to determine the reason why a male cat can have calico fur coloring. Video Preview


Lesson Info
STEM Cases

1.1.8: : Chromosome Mutations

1.B12-1-12: : Identify monosomy and trisomy chromosome mutations from karyotypes.

Screenshot of Human Karyotyping

Human Karyotyping

Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person. 5 Minute Preview


Lesson Info
Launch Gizmo

1.B12-2: : Mechanisms of Inheritance

1.2.2: : DNA Structure

2.B12-2-03: : Describe the structure of a DNA molecule.

Screenshot of Building DNA

Building DNA

Construct a DNA molecule, examine its double-helix structure, and then go through the DNA replication process. Learn how each component fits into a DNA molecule, and see how a unique, self-replicating code can be created. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.3: : DNA Replication

2.B12-2-04: : Describe the process of DNA replication.

Screenshot of Building DNA

Building DNA

Construct a DNA molecule, examine its double-helix structure, and then go through the DNA replication process. Learn how each component fits into a DNA molecule, and see how a unique, self-replicating code can be created. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.4: : Protein Synthesis

2.B12-2-05: : Compare DNA and RNA in terms of their structure, use, and location in the cell.

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Protein Synthesis - High School

Protein Synthesis - High School

As a pediatrician, students learn about genes and protein synthesis to try to help a baby girl named Lucy who has an immunodeficiency disease. Video Preview


Lesson Info
STEM Cases

2.B12-2-06: : Outline the steps involved in protein synthesis.

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Protein Synthesis - High School

Protein Synthesis - High School

As a pediatrician, students learn about genes and protein synthesis to try to help a baby girl named Lucy who has an immunodeficiency disease. Video Preview


Lesson Info
STEM Cases

1.2.6: : Investigating Applications of Gene Technology in Bioresources

2.B12-2-09: : Investigate an issue related to the application of gene technology in bioresources.

Screenshot of GMOs and the Environment

GMOs and the Environment

In this follow-up to the Genetic Engineering Gizmo, explore how farmers can maximize yield while limiting ecosystem damage using genetically modified corn. Choose the corn type to plant and the amount of herbicide and insecticide to use, then measure corn yields and monitor wildlife populations and diversity. Observe the long-term effects of pollutants on a nearby stream ecosystem. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Genetic Engineering

Genetic Engineering

Use genetic engineering techniques to create corn plants resistant to insect pests or tolerant of herbicides. Identify useful genes from bacteria, insert the desired gene into a corn plant, and then compare the modified plant to a control plant in a lab setting. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.7: : Investigating Applications of Gene Technology in Humans

2.B12-2-10: : Investigate an issue related to the application of gene technology in humans.

Screenshot of DNA Profiling

DNA Profiling

Learn how DNA is compared to identify individuals. Identify the sections of DNA that tend to differ and use PCR to amplify these segments. Then use gel electrophoresis to create DNA profiles. Based on what you have learned, create your own DNA profiling test and use this test to analyze crime scene evidence. 5 Minute Preview


Lesson Info
Launch Gizmo

2: : Biodiversity


2.B12-3: : Evolutionary Theory and Biodiversity

2.1.1: : Defining Evolution

2.B12-3-01: : Define the term evolution, explaining how evolution has led to biodiversity by altering populations and not individuals.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution - High School

Evolution - High School

Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview


Lesson Info
STEM Cases

2.1.4: : Adaptation

2.B12-3-04: : Demonstrate, through examples, what the term fittest means in the phrase “survival of the fittest.”

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microevolution

Microevolution

Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution - High School

Evolution - High School

Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview


Lesson Info
STEM Cases

2.1.5: : Natural Selection

2.B12-3-05: : Explain how natural selection leads to changes in populations.

Screenshot of Evolution: Mutation and Selection

Evolution: Mutation and Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Natural Selection

Natural Selection

You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Evolution - High School

Evolution - High School

Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview


Lesson Info
STEM Cases

2.1.6: : Effects of Natural Selection

2.B12-3-06: : Describe how disruptive, stabilizing, and directional natural selection act on variation.

Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo

2.1.7: : Artificial Selection

2.B12-3-07: : Distinguish between natural selection and artificial selection.

Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo

2.1.8: : Population Genetics

2.B12-3-08: : Outline how scientists determine whether a gene pool has changed, according to the criteria for genetic equilibrium.

Screenshot of Evolution - High School

Evolution - High School

Working as a CDC researcher, students investigate an outbreak of multi-drug resistant bacterial infections and determine how evolution was involved by tracing the source and cause of the outbreak. Video Preview


Lesson Info
STEM Cases

2.B12-4: : Organizing Biodiversity

2.2.3: : Determining Evolutionary Relationships

2.B12-4-04: : Describe types of evidence used to classify organisms and determine evolutionary relationships.

Screenshot of Cladograms

Cladograms

Based on the similarities and differences between different organisms, create branching diagrams called cladograms to show how they are related. Use both morphological data (physical traits) and molecular data to create the simplest and most likely cladograms. Five different sets of organisms are available. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Embryo Development

Embryo Development

Explore how a fertilized cell develops into an embryo, a fetus, and eventually an adult organism. Compare embryo development in different vertebrate species and try to guess which embryo belongs to each species. Use dyes to trace the differentiation of cells during early embryo development, from the zygote to the neurula. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Human Evolution - Skull Analysis

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

2.2.5: : Investigating Evolutionary Trends

2.B12-4-07: : Investigate an evolutionary trend in a group of organisms.

Screenshot of Human Evolution - Skull Analysis

Human Evolution - Skull Analysis

Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 11/16/2023

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap