Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (CAN)
  • Manitoba Standards
  • Science: Senior 3 Physics 30S

Manitoba - Science: Senior 3 Physics 30S

Manitoba Curriculum | Adopted: 1999

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.

S3P-1: : Waves


S3P-1.1: : Waves in One Dimension

S3P-1-02: : The student will be able to: Describe, demonstrate, and diagram the characteristics of transverse and longitudinal waves.

Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-03: : The student will be able to: Compare and contrast the frequency and period of a periodic wave.

Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-04: : The student will be able to: Derive and solve problems, using the wave equation (v = f lambda).

Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-05: : The student will be able to: Describe, demonstrate, and diagram the transmission and reflection of waves travelling in one dimension.

Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Waves

Waves

Observe and measure transverse, longitudinal, and combined waves on a model of a spring moved by a hand. Adjust the amplitude and frequency of the hand, and the tension and density of the spring. The speed and power of the waves is reported, and the wavelength and amplitude can be measured. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-06: : The student will be able to: Use the principle of superposition to illustrate graphically the result of combining two waves.

Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1.2: : Waves in Two Dimensions

S3P-1-10: : The student will be able to: Describe, demonstrate, and diagram the reflection of plane (straight) and circular waves.

Screenshot of Laser Reflection

Laser Reflection

Point a laser at a mirror and compare the angle of the incoming beam to the angle of reflection. A protractor can be used to measure the angles of incidence and reflection, and the angle of the mirror can be adjusted. A beam splitter can be used to split the beam. Both plane and irregular mirrors can be used. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-11: : The student will be able to: Describe, demonstrate, and diagram the refraction of plane (straight) waves.

Screenshot of Refraction

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-12: : The student will be able to: Derive Snell’s Law using the relationships between wavelength, velocity, and the angles of incidence and refraction.

Screenshot of Basic Prism

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Refraction

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-13: : The student will be able to: Experiment to demonstrate Snell’s Law.

Screenshot of Basic Prism

Basic Prism

Shine white light or a single-color beam through a prism. Explore how a prism refracts light and investigate the factors that affect the amount of refraction. The index of refraction of the prism, width of the prism, prism angle, light angle, and light wavelength can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Refraction

Refraction

Determine the angle of refraction for a light beam moving from one medium to another. The angle of incidence and each index of refraction can be varied. Using the tools provided, the angle of refraction can be measured, and the wavelength and frequency of the waves in each substance can be compared as well. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-14: : The student will be able to: Describe, demonstrate, and diagram diffraction of water waves.

Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-15: : The student will be able to: Describe, demonstrate, and diagram how constructive and destructive interference produce an interference pattern from two point sources.

Screenshot of Ripple Tank

Ripple Tank

Study wave motion, diffraction, interference, and refraction in a simulated ripple tank. A wide variety of scenarios can be chosen, including barriers with one or two gaps, multiple wave sources, reflecting barriers, or submerged rocks. The wavelength and strength of waves can be adjusted, as well as the amount of damping in the tank. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1.3: : Sound

S3P-1-17: : The student will be able to: Investigate to analyze and explain how sounds are produced, transmitted, and detected, using examples from nature and technology.

Screenshot of Longitudinal Waves

Longitudinal Waves

Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-20: : The student will be able to: Describe and explain in qualitative terms what happens when sound waves interact (interfere) with one another.

Screenshot of Sound Beats and Sine Waves

Sound Beats and Sine Waves

Listen to and see interference patterns produced by sound waves with similar frequencies. Test your ability to distinguish and match sounds as musicians do when they tune their instruments. Calculate the number of "sound beats" you will hear based on the frequency of each sound. [Note: Headphones are recommended for this Gizmo.] 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-24: : The student will be able to: Explain the Doppler effect, and predict in qualitative terms the frequency change that will occur for a stationary and a moving observer.

Screenshot of Doppler Shift

Doppler Shift

Observe sound waves emitted from a moving vehicle. Measure the frequency of sound waves in front of and behind the vehicle as it moves, illustrating the Doppler effect. The frequency of sound waves, speed of the source, and the speed of sound can all be manipulated. Motion of the vehicle can be linear, oscillating, or circular. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Doppler Shift Advanced

Doppler Shift Advanced

Derive an equation to calculate the frequency of an oncoming sound source and a receding sound source. Also, calculate the Doppler shift that results from a moving observer and a stationary sound source. The source velocity, sound velocity, observer velocity, and sound frequency can all be manipulated. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-1-25: : The student will be able to: Define the decibel scale qualitatively, and give examples of sounds at various levels.

Screenshot of Hearing: Frequency and Volume

Hearing: Frequency and Volume

Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-2: : The Nature of Light


S3P-2.2: : Particle and Wave Models of Light

S3P-2-16: : The student will be able to: Discuss Einstein’s explanation of the photoelectric effect qualitatively.

Screenshot of Photoelectric Effect

Photoelectric Effect

Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and amount of light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-2-17: : The student will be able to: Evaluate the particle and wave models of light and outline the currently accepted view.

Screenshot of Photoelectric Effect

Photoelectric Effect

Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and amount of light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-3: : Mechanics


S3P-3.1: : Kinematics

S3P-3-01: : The student will be able to: Differentiate between, and give examples of, scalar and vector quantities.

Screenshot of Adding Vectors

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Vectors

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-3-02: : The student will be able to: Differentiate among position, displacement, and distance.

Screenshot of Distance-Time and Velocity-Time Graphs - Metric

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-3-04: : The student will be able to: Analyze the relationships among position, velocity, acceleration, and time for an object that is accelerating at a constant rate.

Screenshot of Distance-Time and Velocity-Time Graphs - Metric

Distance-Time and Velocity-Time Graphs - Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time. 5 Minute Preview


Lesson Info
Launch Gizmo

1.1.1.1.1.1:

S3P-3.2: : Dynamics

S3P-3-09: : The student will be able to: Perform an experiment to demonstrate Newton’s Second Law (F net = ma).

Screenshot of Atwood Machine

Atwood Machine

Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Fan Cart Physics

Fan Cart Physics

Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-3-12: : The student will be able to: Construct free-body diagrams to determine the net force for objects in various situations.

Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4: : Fields


S3P-4.1: : Gravitational Fields

S3P-4-08: : The student will be able to: Solve free-fall problems.

Screenshot of Free-Fall Laboratory

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4-09: : The student will be able to: Describe terminal velocity, qualitatively and quantitatively.

Screenshot of Free-Fall Laboratory

Free-Fall Laboratory

Investigate the motion of an object as it falls to the ground. A variety of objects can be compared, and their motion can be observed in a vacuum, in normal air, and in denser air. The position, velocity, and acceleration are measured over time, and the forces on the object can be displayed. Using the manual settings, the mass, radius, height, and initial velocity of the object can be adjusted, as can the air density and wind. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4-10: : The student will be able to: Define the coefficient of friction (mu) as the ratio of the force of friction and the normal force.

Screenshot of Inclined Plane - Simple Machine

Inclined Plane - Simple Machine

Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4.3: : Magnetic Fields

S3P-4-20: : The student will be able to: Define the magnetic field as the region of space around a magnet where another magnet will experience a force.

Screenshot of Magnetism

Magnetism

Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4-21: : The student will be able to: Demonstrate and diagram magnetic fields, using lines of force.

Screenshot of Magnetism

Magnetism

Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4-22: : The student will be able to: Describe the concept of magnetic poles and demonstrate that like poles repel and unlike poles attract.

Screenshot of Magnetism

Magnetism

Drag bar magnets and a variety of other objects onto a piece of paper. Click Play to release the objects to see if they are attracted together, repelled apart, or unaffected. You can also sprinkle iron filings over the magnets and other objects to view the magnetic field lines that are produced. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4-24: : The student will be able to: Investigate the influence and effects of the magnetic field of the Earth.

Screenshot of Magnetic Induction

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4.4: : Electromagnetism

S3P-4-25: : The student will be able to: Describe and demonstrate the phenomenon of electromagnetism.

Screenshot of Electromagnetic Induction

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview


Lesson Info
Launch Gizmo

S3P-4-26: : The student will be able to: Diagram and describe qualitatively the magnetic field around a currentcarrying wire.

Screenshot of Electromagnetic Induction

Electromagnetic Induction

Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Magnetic Induction

Magnetic Induction

Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 11/15/2023

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap