Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (CAN)
  • Alberta Standards
  • Science: 10-4

Alberta - Science: 10-4

Alberta Program of Studies | Adopted: 2006

This correlation lists the recommended Gizmos for this province's curriculum standards. Click any Gizmo title below for more information.

10: : Science 10-4


10.A: : Handling chemicals safely, whether at home or in the workplace, requires an understanding of the properties of pure substances and mixtures. Students actively investigate the properties of a variety of matter, including mixtures and solutions, and elements and compounds encountered in everyday life. The atom as the basic building block of matter is introduced. Students also investigate the classification of elements on the periodic table.

1.1.1: : Outcomes for Science, Technology and Society (STS) and Knowledge

10.A.2: : Students will: describe solutions and solubility, solutes and solvents and describe how these concepts are applied to the production of prepared foods and useful materials

10.A.2.1: : define solute, solvent, solution and solubility

Screenshot of Solubility and Temperature

Solubility and Temperature

Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

10.A.2.4: : describe examples of the effect of temperature change on solubility and explain this effect on the basis of the particle model of matter (e.g., concentration of brines for pickling and syrups for canning)

Screenshot of Solubility and Temperature

Solubility and Temperature

Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

10.A.2.6: : describe, in general terms, the pH scale as an indicator of acidity or basicity (e.g.., a pH of less than 7 indicates an acid, a pH of greater than 7 indicates a base)

Screenshot of pH Analysis

pH Analysis

Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo

1.1.2: : Skill Outcomes

10.A.4: : Students will: ask questions about the relationships among observable variables and conduct investigations to address those questions

10.A.4.4: : carry out investigations/experiments

Screenshot of Solubility and Temperature

Solubility and Temperature

Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis

pH Analysis

Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo

10.A.5: : Students will: conduct investigations into the relationships among observations and gather and record data

10.A.5.1: : perform experiments and/or conduct investigations (e.g., investigate properties such as physical appearance, density, solubility, magnetism and melting point of sample materials in the laboratory)

Screenshot of Density Laboratory

Density Laboratory

With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solubility and Temperature

Solubility and Temperature

Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis

pH Analysis

Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo

10.A.6: : Students will: examine data and develop and assess possible explanations

10.A.6.1: : examine patterns and trends in data and give possible explanations

Screenshot of Density Laboratory

Density Laboratory

With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solubility and Temperature

Solubility and Temperature

Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

10.A.6.2: : state a possible conclusion based on experimental data and explain how the evidence gathered supports or refutes the initial prediction.

Screenshot of Solubility and Temperature

Solubility and Temperature

Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Photosynthesis - High School

Photosynthesis - High School

As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview


Lesson Info
STEM Cases

1.1.3: : Attitude Outcomes

10.A.10: : Students will be encouraged to: apply a variety of strategies to investigate questions, problems and issues and apply scientific methods to carefully gather evidence when investigating problems and issues (e.g., ask questions to ensure personal understanding)

Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

10.B: : Energy can be transferred by heat and by the use of force or distance multipliers called machines. The optimal design of such technologies is based upon an understanding of energy transfer, heat, temperature and force. Students understand that the design of energy transfer technologies takes into consideration the need for safety and for efficiency as a means of reducing reliance upon nonrenewable energy resources.

1.2.1: : Outcomes for Science, Technology and Society (STS) and Knowledge

10.B.1: : Students will: examine how natural and technological cooling and heating systems are based on the transfer of thermal energy (heat) from hot to cold objects

10.B.1.2: : describe the three ways (e.g.., radiation, convection and conduction) thermal energy transfers from warmer to cooler objects

Screenshot of Conduction and Convection

Conduction and Convection

Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo

10.B.1.5: : examine the roles of convection and conduction in distributing heat in natural and technological systems (e.g., sea and land breezes, cast-iron pots and pans)

Screenshot of Coastal Winds and Clouds - Metric

Coastal Winds and Clouds - Metric

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Convection Cells

Convection Cells

Explore the causes of convection by heating liquid and observing the resulting motion. The location and intensity of the heat source (or sources) can be varied, as well as the viscosity of the liquid. Use a probe to measure temperature and density in different areas and observe the motion of molecules in the liquid. Then, explore real-world examples of convection cells in Earth's mantle, oceans, and atmosphere. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo

10.B.3: : Students will: describe and compare simple machines as devices that transfer energy and multiply forces or distances

10.B.3.1: : describe simple machines as devices that transfer energy (e.g., screws, ramps, hammers, hockey sticks, tennis rackets)

Screenshot of Pulley Lab

Pulley Lab

Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Trebuchet

Trebuchet

Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview


Lesson Info
Launch Gizmo

1.2.2: : Skill Outcomes

10.B.4: : Students will: ask questions about the relationships among observable variables and conduct investigations to address those questions

10.B.4.2: : state a prediction and a hypothesis based on background information or an observed pattern of events (e.g., hypothesize the relationship between the rate of thermal conduction in different materials and insulative properties)

Screenshot of Conduction and Convection

Conduction and Convection

Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Levers

Levers

Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview


Lesson Info
Launch Gizmo

10.B.6: : Students will: examine data and develop and assess possible explanations

10.B.6.1: : examine patterns and trends in data and explain possible relationships among the major variables (e.g., suggest possible reasons for daily fluctuations in domestic energy consumption)

Screenshot of Coastal Winds and Clouds - Metric

Coastal Winds and Clouds - Metric

Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Conduction and Convection

Conduction and Convection

Two flasks hold colored water, one yellow and the other blue. Set the starting temperature of each flask, choose a type of material to connect the flasks, and see how quickly the flasks heat up or cool down. The flasks can be connected with a hollow pipe, allowing the water in the flasks to mix, or a solid chunk that transfers heat but prevents mixing. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo

10.B.6.2: : identify potential applications of findings (e.g., perform an experiment to investigate how well various materials insulate, graph temperature changes)

Screenshot of Heat Transfer by Conduction

Heat Transfer by Conduction

An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar. 5 Minute Preview


Lesson Info
Launch Gizmo

10.C: : Life processes require the exchange of matter between living systems and the external environment. Students investigate life processes at the organism and system level. In closely studying the digestive and circulatory systems, students understand that a healthy diet and lifestyle is crucial to their wellness.

1.3.1: : Outcomes for Science, Technology and Society (STS) and Knowledge

10.C.1: : Students will: examine, in general terms, the exchange of matter by the digestive and circulatory systems, the functional relationship between the two systems and the need for a healthy diet and lifestyle

10.C.1.6: : examine the intake and processing of matter by the digestive system (e.g., foods are broken down into molecules that are absorbed into the blood stream from the intestine, food intake leads to increased blood sugar and mineral levels)

Screenshot of Digestive System

Digestive System

Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo

10.C.2: : Students will: examine disorders of the digestive and circulatory systems induced by genetic, lifestyle and environmental factors

10.C.2.2: : explain that illness and possibly death may result when the body cannot accommodate major disturbances (e.g., appendicitis, kidney failure, heart attacks) within the digestive, excretory and circulatory systems

Screenshot of Homeostasis - High School

Homeostasis - High School

In the role of a physician assistant, students help a young man, named Anthony, who has Type II diabetes and high blood pressure. Students must make a diagnosis and then must apply the principles of filtration and homeostasis to help Anthony. Video Preview


Lesson Info
STEM Cases

10.C.3: : Students will: describe, in general terms, the structure and function of plant and animal cell parts

10.C.3.1: : examine the structure of the major parts of plant and animal cells, including the cell membrane, nucleus, vacuole, mitochondrion, chloroplast and cell wall

Screenshot of Cell Structure

Cell Structure

Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview


Lesson Info
Launch Gizmo

10.C.4: : Students will: identify and compare, in general terms, the life functions common to living systems, from cells to organ systems

10.C.4.1: : examine the relationship between photosynthesis and cellular respiration in terms of biological energy storage (e.g., capture of energy from the sun in glucose during photosynthesis and the release of energy from glucose during cellular respiration)

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Photosynthesis - High School

Photosynthesis - High School

As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview


Lesson Info
STEM Cases

10.C.4.3: : identify the organs and systems in plants and animals that perform life functions

Screenshot of Circulatory System

Circulatory System

Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Digestive System

Digestive System

Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Frog Dissection

Frog Dissection

Use a scalpel, forceps, and pins to dissect realistic male and female frogs. Organs can be removed and placed into organ system diagrams. Once the dissections are complete, the frog organ systems can be compared. Zooming, rotating, and panning tools are available to examine the frog from any angle. 5 Minute Preview


Lesson Info
Launch Gizmo

10.C.4.4: : identify the major human organ systems that perform critical life functions (e.g., energy conversion, response to the environment, growth, reproduction, conservation or dissipation of thermal energy)

Screenshot of Circulatory System

Circulatory System

Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Digestive System

Digestive System

Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo

1.3.2: : Skill Outcomes

10.C.6: : Students will: conduct investigations into the relationships among observations and gather and record data

10.C.6.1: : conduct procedures, controlling the major variables (e.g., identify the manipulated, responding and controlled variables for an experimental investigation of the effect of exercise on heart rate)

Screenshot of Photosynthesis - High School

Photosynthesis - High School

As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview


Lesson Info
STEM Cases

10.C.6.2: : use instruments effectively and accurately to collect data (e.g., prepare wet mounts of tissue and observe cellular structures specific to plant and animal cells, observe structures using microscopes)

Screenshot of Cell Types

Cell Types

Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview


Lesson Info
Launch Gizmo

10.C.7: : Students will: examine data and develop and assess possible explanations

10.C.7.1: : state a conclusion, based on experimental data, and explain how evidence gathered supports or refutes an initial idea (e.g., observe the feeding behavior of paramecia and compare to the processes that occur in a human organism)

Screenshot of Photosynthesis - High School

Photosynthesis - High School

As a marine biologist students learn about photosynthesis to help scientists in Australia determine why the coral in the Great Barrier Reef is bleaching. Video Preview


Lesson Info
STEM Cases

10.D: : Energy from the Sun sustains living systems and maintains equilibrium in the biosphere. In the biosphere, matter is recycled along natural pathways. Students learn, however, that increasing human population, human activity, use of energy and reliance on manufactured materials are having an impact on the movement of energy in the biosphere. This raises global concerns about sustainability.

1.4.1: : Outcomes for Science, Technology and Society (STS) and Knowledge

10.D.1: : Students will: examine how the flow of matter in the biosphere is cyclical along characteristic pathways and can be disrupted by human activity

10.D.1.1: : examine natural food chains, food webs and energy pyramids

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - High School

Ecosystems - High School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

10.D.2: : Students will: examine a local ecosystem in terms of its biotic and abiotic components and describe the factors that maintain its equilibrium

10.D.2.3: : examine how various abiotic factors influence biodiversity in an ecosystem (e.g., climate, substrate, temperature, elevation)

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

10.D.2.4: : explain how various factors influence the size of populations (e.g., immigration, emigration, birth rate and death rate, food supply, predation, disease, number of offspring produced, climate change)

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - High School

Ecosystems - High School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

10.D.2.5: : examine how interactions among organisms limit populations (e.g., predation, parasitism, competition)

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - High School

Ecosystems - High School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

1.4.2: : Skill Outcomes

10.D.3: : Students will: ask questions about relationships among observable variables and conduct investigations to address those questions

10.D.3.1: : identify questions arising from practical problems and issues (e.g., develop questions related to recycling, ozone thinning)

Screenshot of Nitrogen Cycle - High School

Nitrogen Cycle - High School

An infant on a farm has blue baby syndrome. As an EPA environmental engineer, students must find the cause of the baby's illness. Using environment data, students learn the importance of the nitrogen cycle and how human factors can impact nature. Video Preview


Lesson Info
STEM Cases

10.D.4: : Students will: conduct investigations into the relationships among observations and gather and record data

10.D.4.2: : organize data, using a format that is appropriate to the task or experiment (e.g., review the data collected in an ecosystem study and present this information in a written or graphic format or in an oral presentation to peers)

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - High School

Ecosystems - High School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

10.D.5: : Students will: examine data and develop and assess possible explanations

10.D.5.1: : compile and display data, by hand or computer, in a variety of formats, including diagrams, flow charts, tables, bar graphs, line graphs

Screenshot of Coral Reefs 1 - Abiotic Factors

Coral Reefs 1 - Abiotic Factors

Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Coral Reefs 2 - Biotic Factors

Coral Reefs 2 - Biotic Factors

In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - High School

Ecosystems - High School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

10.D.5.3: : state a conclusion, based on experimental data, and explain how evidence gathered supports or refutes an initial idea

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ecosystems - High School

Ecosystems - High School

As a national park ranger, students must restore the ecosystem of a park back to normal. They interact with populations of many organisms including wolves, deer and bees. Students learn the importance of food chains and webs, and how human factors can impact the health of an environment. Video Preview


Lesson Info
STEM Cases

Correlation last revised: 11/17/2022

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap