- Home
- Find Gizmos
- Browse by Standard (USA)
- Iowa Standards
- Science: Grades: 9-11
Wyoming - Science: Grades 9-11
Content Standards | Adopted: 2008
SC11.1: : Science is a dynamic process; concepts and processes in life systems, earth and space systems, and physical systems are best learned through inquiry and investigation. Students develop an understanding of scientific content through inquiry within the context of these unifying concepts and processes:
SC11.1.2: : Molecular Basis of Heredity: Demonstrate an understanding that organisms ensure species continuity by passing genetic information from parent to offspring. Utilize genetic information to make predictions about possible offspring. Apply concepts of molecular biology (DNA and genes) to recent discoveries.
DNA Analysis
Scan the DNA of frogs to produce DNA sequences. Use the DNA sequences to identify possible identical twins and to determine which sections of DNA code for skin color, eye color, and the presence or absence of spots. 5 Minute Preview
Hardy-Weinberg Equilibrium
Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview
Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
SC11.1.3: : Biological Evolution: Explain how species evolve over time. Understand that evolution is the consequence of various interactions, including the genetic variability of offspring due to mutation and recombination of genes, and the ensuing selection by the environment of those offspring better able to survive and leave additional offspring. Discuss natural selection and that its evolutionary consequences provide a scientific explanation for the great diversity of organisms as evidenced by the fossil record. Examine how different species are related by descent from common ancestors. Explain how organisms are classified based on similarities that reflect their evolutionary relationships, with species being the most fundamental unit of classification.
Evolution: Mutation and Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage. 5 Minute Preview
Rainfall and Bird Beaks - Metric
Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview
SC11.1.4: : Interdependence of Organisms: Investigate the interrelationships and interdependence of organisms, including the ecosystem concept, energy flow, competition for resources, and human effects on the environment.
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes. 5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview
SC11.1.5: : Matter, Energy, and Organization in Living Systems: Describe the need of living systems for a continuous input of energy to maintain chemical and physical stability. Explain the unidirectional flow of energy and organic matter through a series of trophic levels in living systems. Investigate the distribution and abundance of organisms in ecosystems, which are limited by the availability of matter and energy and the ability of the living system to recycle materials.
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview
SC11.1.7: : Geochemical Cycles: Describe the Earth as a closed system and demonstrate a conceptual understanding of the following systems: Geosphere, Hydrosphere, Atmosphere, Biosphere. Explain the role of energy in each of these systems, such as weather patterns, global climate, weathering, and plate tectonics.
Carbon Cycle
Follow the path of a carbon atom through the atmosphere, biosphere, hydrosphere, and geosphere. Manipulate a simplified model to see how human activities and other factors affect the amount of atmospheric carbon today and in the future. 5 Minute Preview
SC11.1.10: : Structure and Properties of Matter: Describe the atomic structure of matter, including subatomic particles, their properties, and interactions. Recognize that elements are organized into groups in the periodic table based on their outermost electrons and these groups have similar properties. Explain chemical bonding in terms of the transfer or sharing of electrons between atoms. Describe physical states of matter and phase changes. Differentiate between chemical and physical properties, and chemical and physical changes.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Covalent Bonds
Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview
Electron Configuration
Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview
Element Builder
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview
Ionic Bonds
Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview
SC11.1.11: : Chemical Reactions: Recognize that chemical reactions take place all around us. Realize that chemical reactions may release or consume energy, occur at different rates. Identify the factors that affect reaction rates. and result in the formation of different substances.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview
Collision Theory
Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
SC11.1.12: : Conservation of Energy and Increase in Disorder: Demonstrate and understanding of the laws of conservation of mass and energy within the context of physical and chemical changes. Realize the tendency for systems to increase in disorder.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
SC11.1.13: : Energy and Matter: Demonstrate an understanding of types of energy, energy transfer and transformations, and the relationship between mass and energy.
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
SC11.1.14: : Force and Motion: Develop a conceptual understanding of Newton?s Laws of Motion, gravity, electricity, and magnetism.
Atwood Machine
Measure the height and velocity of two objects connected by a massless rope over a pulley. Observe the forces acting on each mass throughout the simulation. Calculate the acceleration of the objects, and relate these calculations to Newton's Laws of Motion. The mass of each object can be manipulated, as well as the mass and radius of the pulley. 5 Minute Preview
Electromagnetic Induction
Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire. 5 Minute Preview
Fan Cart Physics
Gain an understanding of Newton's Laws by experimenting with a cart (on which up to three fans are placed) on a linear track. The cart has a mass, as does each fan. The fans exert a constant force when switched on, and the direction of the fans can be altered as the position, velocity, and acceleration of the cart are measured. 5 Minute Preview
Magnetic Induction
Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote