- Home
- Find Gizmos
- Browse by Standard (USA)
- Utah Standards
- Science: 8th Grade
Mississippi - Science: 8th Grade
College- and Career-Readiness Standards | Adopted: 2018
L.8: : Life Science
DCI.L.8.2: : Reproduction and Heredity
(Framing Text): : Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. The process of passing genetic information to offspring is inheritance. During sexual reproduction, genetic information is passed to offspring resulting in similarities and differences between parental organisms and their offspring. There are advantages and disadvantages of the two types of reproduction.
L.8.2A: : Students will demonstrate an understanding of how sexual reproduction results in offspring with genetic variation while asexual reproduction results in offspring with identical genetic information.
L.8.2A.2: : Create a diagram of mitosis and explain its role in asexual reproduction, which results in offspring with identical genetic information.
Cell Division
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview
(Framing Text): : Inheritance is the key process causing similarities between parental organisms and their offspring. Organisms that reproduce sexually transfer genetic information (DNA) to their offspring. This transfer of genetic information through inheritance leads to greater similarity among individuals within a population than between populations. Genetic changes can accumulate through natural selection or mutation that can lead to the evolution of species. Humans can manipulate genetic information using technology.
L.8.2B: : Students will demonstrate an understanding of the differences in inherited and acquired characteristics and how environmental factors (natural selection) and the use of technologies (selective breeding, genetic engineering) influence the transfer of genetic information.
L.8.2B.3: : Use mathematical and computational thinking to analyze data and make predictions about the outcome of specific genetic crosses (monohybrid Punnett Squares) involving simple dominant/recessive traits.
Inheritance
Create aliens with different traits and breed them to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released. 5 Minute Preview
Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview
DCI.L.8.4: : Adaptation and Diversity
(Framing Text): : The scientific theory of evolution underlies the study of biology and provides an explanation for both the diversity of life on Earth and similarities of all organisms at the chemical, cellular, and molecular level. Multiple forms of scientific evidence support the theory of evolution. Adaptations are physical or behavioral changes that are inherited and enhance the ability of an organism to survive and reproduce in a particular environment.
L.8.4A: : Students will demonstrate an understanding of the process of natural selection, in which variations in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment.
L.8.4A.2: : Investigate to construct explanations about natural selection that connect growth, survival, and reproduction to genetic factors, environmental factors, food intake, and interactions with other organisms.
Rainfall and Bird Beaks - Metric
Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview
P.8: : Physical Science
DCI.P.8.6: : Motions, Forces, and Energy
(Framing Text): : Waves have energy that is transferred when they interact with various types of matter. A repeating pattern of motion allows the transfer of energy from place to place without overall displacement of matter. All types of waves have some features in common. When waves interact, they affect each other resulting in changes to the resonance. Many modern technologies are based on waves and their interactions with matter.
P.8.6: : Students will demonstrate an understanding of the properties, behaviors, and application of waves.
P.8.6.3: : Conduct simple investigations about the performance of waves to describe their behavior (e.g., refraction, reflection, transmission, and absorption) as they interact with various materials (e.g., lenses, mirrors, and prisms).
Color Absorption
Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
P.8.6.4: : Use scientific processes to plan and conduct controlled investigations to conclude sound is a wave phenomenon that is characterized by amplitude and frequency.
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
P.8.6.6: : Obtain and evaluate scientific information to explain the relationship between seeing color and the transmission, absorption, or reflection of light waves by various materials.
Color Absorption
Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview
Heat Absorption
Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview
Radiation
Use a powerful flashlight to pop a kernel of popcorn. A lens focuses light on the kernel. The temperature of the filament and the distance between the flashlight and lens can be changed. Several obstacles can be placed between the flashlight and the popcorn. 5 Minute Preview
E.8: : Earth and Space Science
DCI.E.8.7: : Earth’s Structure and History
(Framing Text): : Fossils are preserved remains or traces of organisms that lived in the past. Thousands of layers of sedimentary rock not only provide evidence of the history of Earth itself but also of changes in organisms whose fossil remains have been found in those layers. The collection of fossils and their placement in chronological order (e.g., through the location of rock layers or through radioactive dating) is collectively known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth.
E.8.7: : Students will demonstrate an understanding of geological evidence to analyze patterns in Earth’s major events, processes, and evolution in history.
E.8.7.2: : Create a model of the processes involved in the rock cycle and relate it to the fossil record.
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust. 5 Minute Preview
DCI.E.8.9: : Earth’s Systems and Cycles
(Framing Text): : Earth systems and cycles are characterized by cause and effect relationships. All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. Landforms and water distribution result from constructive and destructive processes. Physical and chemical interactions among rocks, sediments, water, air, and organisms produce soil. Water’s movements—both on the land and underground—cause weathering and erosion. Plate tectonics is the unifying theory that explains the past and current crustal movements at the surface. This theory provides a framework for understanding geological history. Mapping land and water patterns based on investigations of rocks and fossils can help forecast the proximity and probability of future events.
E.8.9A: : Students will demonstrate an understanding that physical processes and major geological events (e.g., plate movement, volcanic activity, mountain building, weathering, erosion) are powered by the Sun and the Earth’s internal heat and have occurred over millions of years.
E.8.9A.5: : Use models that demonstrate convergent and divergent plate movements that are responsible for most landforms and the distribution of most rocks and minerals within Earth’s crust.
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth. 5 Minute Preview
E.8.9A.7: : Explain the interconnected relationship between surface water and groundwater.
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations. 5 Minute Preview
(Framing Text): : Natural processes can cause sudden or gradual changes to Earth’s systems. Some may adversely affect humans such as volcanic eruptions or earthquakes. Mapping the history of natural hazards in a region, combined with an understanding of related geological forces can help forecast the locations and likelihoods of future events.
E.8.9B: : Students will demonstrate an understanding of natural hazards (volcanic eruptions, severe weather, earthquakes) and construct explanations for why some hazards are predictable and others are not.
E.8.9B.3: : Using an engineering design process, create mechanisms to improve community resilience, which safeguard against natural hazards (e.g., building restrictions in flood or tidal zones, regional watershed management, Firewise construction).
Trebuchet
Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview
DCI.E.8.10: : Earth’s Resources
(Framing Text): : Humans depend on Earth’s land, ocean, atmosphere, and biosphere for many different resources, both renewable and nonrenewable. Human activities have significantly altered the biosphere, sometimes damaging, or destroying natural habitats that could cause extinction or the threat of extinction of many species. Past and present geological events have distributed resources unevenly around the planet; therefore, there has been an increase in, and continued need for, technology to harness available resources and develop alternatives.
E.8.10: : Students will demonstrate an understanding that a decrease in natural resources is directly related to the increase in human population on Earth and must be conserved.
E.8.10.4: : Using an engineering design process, develop a system to capture and distribute thermal energy that makes renewable energy more readily available and reduces human impact on the environment (e.g., building solar water heaters, conserving home energy).
Trebuchet
Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote