Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Mississippi Standards
  • Science: 7th Grade

Mississippi - Science: 7th Grade

College- and Career-Readiness Standards | Adopted: 2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

L.7: : Life Science


DCI.L.7.3: : Ecology and Interdependence

(Framing Text): : The emphasis is on predicting consistent patterns of interactions among different cycling systems in terms of the relationships between organisms and abiotic components within ecosystems. Rearrangement of food molecules through chemical processes in cellular respiration and photosynthesis is an important part of energy cycling in all life systems. Preservation of biodiversity and consideration of human impacts are themes in maintaining ecosystem services.

L.7.3: : Students will demonstrate an understanding of the importance that matter cycles between living and nonliving parts of the ecosystem to sustain life on Earth.

L.7.3.1: : Analyze diagrams to provide evidence of the importance of the cycling of water, oxygen, carbon, and nitrogen through ecosystems to organisms.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo

L.7.3.3: : Use models to describe how food molecules (carbohydrates, lipids, proteins) are processed through chemical reactions using oxygen (aerobic) to form new molecules.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo

P.7: : Physical Science


DCI.P.7.5: : Organization of Matter and Chemical Interactions

(Framing Text): : Matter and its interactions can be distinguished by investigating physical properties (e.g., mass, density, solubility) using chemical processes and experimentation. Changes to substances can either be physical or chemical.

P.7.5A: : Students will demonstrate an understanding of the physical and chemical properties of matter.

P.7.5A.1: : Collect and evaluate qualitative data to describe substances using physical properties (state, boiling/melting point, density, heat/electrical conductivity, color, and magnetic properties).

Screenshot of Circuit Builder

Circuit Builder

Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Color Absorption

Color Absorption

Mix the primary colors of light by using red, green, and blue lights. Use pieces of colored glass to filter the light and create a wide variety of colors. Determine how light is absorbed and transmitted by each color of glass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Heat Absorption

Heat Absorption

Shine a powerful flashlight on a variety of materials, and measure how quickly each material heats up. See how the light angle, light color, type of material, and material color affect heating. A glass cover can be added to simulate a greenhouse. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mineral Identification

Mineral Identification

Observe and measure the properties of a mineral sample, and then use a key to identify the mineral. Students can observe the color, luster, shape, density, hardness, streak, and reaction to acid for each mineral. There are 26 mineral samples to identify. 5 Minute Preview


Lesson Info
Launch Gizmo

P.7.5A.3: : Compare and contrast chemical and physical properties (e.g., combustion, oxidation, pH, solubility, reaction with water).

Screenshot of Mineral Identification

Mineral Identification

Observe and measure the properties of a mineral sample, and then use a key to identify the mineral. Students can observe the color, luster, shape, density, hardness, streak, and reaction to acid for each mineral. There are 26 mineral samples to identify. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : Atoms are the basic building blocks of ordinary elements. Compounds are substances composed of two or more elements. Chemical formulas can be used to describe compounds. The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The element position on the periodic table can also be used to predict the type of bonding that most commonly occurs between the elements.

P.7.5C: : Students will demonstrate an understanding of the proper use of the periodic table to predict and identify elemental properties and how elements interact.

P.7.5C.1: : Develop and use models that explain the structure of an atom.

Screenshot of Element Builder

Element Builder

Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : Changes to substances can either be physical or chemical. Many substances react chemically with other substances to form new substances with different properties. Substances (such as metals or acids) are identified according to their physical or chemical properties. Some chemical reactions release energy and others store energy.

P.7.5D: : Students will demonstrate an understanding of chemical formulas and common chemical substances to predict the types of reactions and possible outcomes of the reactions.

P.7.5D.2: : Design and conduct scientific investigations to support evidence that chemical reactions (e.g., cooking, combustion, rusting, decomposition, photosynthesis, and cellular respiration) have occurred.

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

P.7.5D.4: : Build a model to explain that chemical reactions can store (formation of bonds) or release energy (breaking of bonds).

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : In a chemical process, the atoms that make up original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. The total number of each type of atom is conserved, and the mass does not change. As these chemical combinations take place, substances react in various ways, yet matter is always conserved in a reaction.

P.7.5E: : Students will demonstrate an understanding of the law of conservation of mass.

P.7.5E.1: : Conduct simple scientific investigations to show that total mass is not altered during a chemical reaction in a closed system. Compare results of investigations to Antoine-Laurent Lavoisier’s discovery of the law of conservation of mass.

Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo

E.7: : Earth and Space Science


DCI.E.7.9: : Earth’s Systems and Cycles

(Framing Text): : Complex patterns in the movement of air and water in the atmosphere are major determinants of local weather. Global movements of water and its changes in form are propelled by sunlight and gravity. Variations in temperature drive a global pattern of interconnected currents. Interactions between sunlight, oceans, atmosphere, ice, landforms, and living things vary with latitude, altitude, and local and regional geography. Weather is difficult to predict; however, large scale patterns and trends in global climate, such as the gradual increase in average temperature, are more easily observed and predicted.

E.7.9A: : Students will demonstrate an understanding of how complex changes in the movement and patterns of air and water molecules caused by the sun, winds, landforms, ocean temperatures, and currents in the atmosphere are major determinants of local and global weather patterns.

E.7.9A.3: : Interpret atmospheric data from satellites, radar, and weather maps to predict weather patterns and conditions.

Screenshot of Weather Maps - Metric

Weather Maps - Metric

Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : The tilt of Earth’s spin axis with respect to the plane of its orbit around the sun is important for a habitable Earth. The Earth’s spin axis is tilted 23.5 degrees. Earth’s axis points in the same direction in space no matter where Earth is in relation to the sun. The seasons are a result of this tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

E.7.9C: : Students will demonstrate an understanding that the seasons are the direct result of the Earth’s tilt and the intensity of sunlight on the Earth’s hemispheres.

E.7.9C.1: : Construct models and diagrams to illustrate how the tilt of Earth’s axis results in differences in intensity of sunlight on the Earth’s hemispheres throughout the course of one full revolution around the Sun.

Screenshot of Seasons: Why do we have them?

Seasons: Why do we have them?

Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Summer and Winter

Summer and Winter

Observe the tilt of Earth's axis and the angle that sunlight strikes Earth on June 21 and December 21. Compare day lengths, temperatures, and the angle of the Sun's rays for any latitude. The tilt of the Earth's axis can be varied to see how this would affect seasons. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 5/19/2025

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap