- Home
- Find Gizmos
- Browse by Standard (USA)
- Delaware Standards
- Mathematics: Pre-Calculus

# Utah - Mathematics: Pre-Calculus

## UT--Core Standards | Adopted: 2016

### P.MP: : Mathematical Practices

P.MP.1: : Make sense of problems and persevere in solving them.

Biconditional Statements

Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

Conditional Statements

Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

Estimating Population Size

Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview

Pattern Flip (Patterns)

In the Pattern Flip carnival game, you are shown a pattern of cards. The first cards are face-up so you can see the pattern, and the rest are face-down. Can you guess which animals are on the face-down cards? Use one of the preset patterns, or make your own custom pattern. Good luck! 5 Minute Preview

P.MP.1.a: : Explain the meaning of a problem and look for entry points to its solution. Analyze givens, constraints, relationships, and goals. Make conjectures about the form and meaning of the solution, plan a solution pathway, and continually monitor progress asking, “Does this make sense?” Consider analogous problems, make connections between multiple representations, identify the correspondence between different approaches, look for trends, and transform algebraic expressions to highlight meaningful mathematics. Check answers to problems using a different method.

Biconditional Statements

Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

Estimating Population Size

Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview

Fraction, Decimal, Percent (Area and Grid Models)

Model and compare fractions, decimals, and percents using area models. Each area model can have 10 or 100 sections and can be set to display a fraction, decimal, or percent. Click inside the area models to shade them. Compare the numbers visually or on a number line. 5 Minute Preview

Improper Fractions and Mixed Numbers

Represent a quantity given by a shaded region as an improper fraction and as a mixed number. Experiment with different shaded regions sliced differently. 5 Minute Preview

Linear Inequalities in Two Variables

Find the solution set to a linear inequality in two variables using the graph of the linear inequality. Vary the terms of the inequality and vary the inequality symbol. Examine how the boundary line and shaded region change in response. 5 Minute Preview

Modeling One-Step Equations

Solve a linear equation using a tile model. Use feedback to diagnose incorrect steps. 5 Minute Preview

Multiplying with Decimals

Multiply two decimals using a dynamic area model. On a grid, shade the region with width equal to one of the decimals and height equal to the other decimal and find the area of the region. 5 Minute Preview

Pattern Flip (Patterns)

In the Pattern Flip carnival game, you are shown a pattern of cards. The first cards are face-up so you can see the pattern, and the rest are face-down. Can you guess which animals are on the face-down cards? Use one of the preset patterns, or make your own custom pattern. Good luck! 5 Minute Preview

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview

Solving Equations on the Number Line

Solve an equation involving decimals using dynamic arrows on a number line. 5 Minute Preview

Using Algebraic Equations

Translate equations into English sentences and translate English sentences into equations. Read the equation or sentence and select word tiles or symbol tiles to form the corresponding sentence or equation. 5 Minute Preview

Using Algebraic Expressions

Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview

P.MP.2: : Reason abstractly and quantitatively.

Conditional Statements

Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

Estimating Population Size

Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake. 5 Minute Preview

P.MP.3: : Construct viable arguments and critique the reasoning of others.

Biconditional Statements

Make a biconditional statement from a given definition using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

P.MP.3.a: : Understand and use stated assumptions, definitions, and previously established results in constructing arguments. Make conjectures and build a logical progression of statements to explore the truth of their conjectures. Justify conclusions and communicate them to others. Respond to the arguments of others by listening, asking clarifying questions, and critiquing the reasoning of others.

Biconditional Statements

Conditional Statements

Make a conditional statement from a given fact using word tiles. Use both symbolic form and standard English form. 5 Minute Preview

P.MP.4: : Model with mathematics.

Estimating Sums and Differences

Estimate the sum or difference of two fractions using area models. Compare estimates to exact sums and differences. 5 Minute Preview

P.MP.4.a: : Apply mathematics to solve problems arising in everyday life, society, and the workplace. Make assumptions and approximations, identifying important quantities to construct a mathematical model. Routinely interpret mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Determining a Spring Constant

Place a pan on the end of a hanging spring. Measure how much the spring stretches when various masses are added to the pan. Create a graph of displacement vs. mass to determine the spring constant of the spring. 5 Minute Preview

Estimating Population Size

P.MP.5: : Use appropriate tools strategically.

Elapsed Time

Calculate the difference between the times given by two analog clocks. Rotate the hands of the clocks to change the time and see how the calculation changes. 5 Minute Preview

P.MP.5.a: : Consider the available tools and be sufficiently familiar with them to make sound decisions about when each tool might be helpful, recognizing both the insight to be gained as well as the limitations. Identify relevant external mathematical resources and use them to pose or solve problems. Use tools to explore and deepen their understanding of concepts.

Segment and Angle Bisectors

Explore the special properties of a point that lies on the perpendicular bisector of a segment, and of a point that lies on an angle bisector. Manipulate the point, the segment, and the angle to see that these properties are always true. 5 Minute Preview

P.MP.6: : Attend to precision.

Biconditional Statements

Fraction, Decimal, Percent (Area and Grid Models)

Model and compare fractions, decimals, and percents using area models. Each area model can have 10 or 100 sections and can be set to display a fraction, decimal, or percent. Click inside the area models to shade them. Compare the numbers visually or on a number line. 5 Minute Preview

Using Algebraic Expressions

Translate algebraic expressions into English phrases, and translate English phrases into algebraic expressions. Read the expression or phrase and select word tiles or symbol tiles to form the corresponding phrase or expression. 5 Minute Preview

P.MP.6.a: : Communicate precisely to others. Use explicit definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose. Specify units of measure and label axes to clarify the correspondence with quantities in a problem. Calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Finding Patterns

Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview

Fraction, Decimal, Percent (Area and Grid Models)

Model and compare fractions, decimals, and percents using area models. Each area model can have 10 or 100 sections and can be set to display a fraction, decimal, or percent. Click inside the area models to shade them. Compare the numbers visually or on a number line. 5 Minute Preview

Function Machines 2 (Functions, Tables, and Graphs)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

Pattern Flip (Patterns)

In the Pattern Flip carnival game, you are shown a pattern of cards. The first cards are face-up so you can see the pattern, and the rest are face-down. Can you guess which animals are on the face-down cards? Use one of the preset patterns, or make your own custom pattern. Good luck! 5 Minute Preview

P.MP.7: : Look for and make use of structure.

Pattern Flip (Patterns)

P.MP.7.a: : Look closely at mathematical relationships to identify the underlying structure by recognizing a simple structure within a more complicated structure. See complicated things, such as some algebraic expressions, as single objects or as being composed of several objects.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Finding Patterns

Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview

Function Machines 2 (Functions, Tables, and Graphs)

Drop a number into a function machine, and see what number comes out! You can use one of the six pre-set function machines, or program your own function rule into one of the blank machines. Stack up to three function machines together. Input and output can be recorded in a table and on a graph. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

Pattern Flip (Patterns)

P.MP.8: : Look for and express regularity in repeated reasoning.

Arithmetic Sequences

Find the value of individual terms in arithmetic sequences using graphs of the sequences and direct computation. Vary the common difference and examine how the sequences change in response. 5 Minute Preview

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

Finding Patterns

Build a pattern to complete a sequence of patterns. Study a sequence of three patterns of squares in a grid and build the fourth pattern of the sequence in a grid. 5 Minute Preview

Geometric Sequences

Explore geometric sequences by varying the initial term and the common ratio and examining the graph. Compute specific terms in the sequence using the explicit and recursive formulas. 5 Minute Preview

Pattern Finder

Observe frogs jumping around on colored lily pads. Find, test, and reason about patterns you see in their jumping. 5 Minute Preview

Pattern Flip (Patterns)

P.MP.8.a: : Notice if reasoning is repeated, and look for both generalizations and shortcuts. Evaluate the reasonableness of intermediate results by maintaining oversight of the process while attending to the details.

Arithmetic Sequences

Arithmetic and Geometric Sequences

Find the value of individual terms in an arithmetic or geometric sequence using graphs of the sequence and direct computation. Vary the common difference and common ratio and examine how the sequence changes in response. 5 Minute Preview

Geometric Sequences

### N: : Number and Quantity

N.VM: : Vector and Matrix Quantities

(Framing Text): : Represent and model with vector quantities.

N.VM.1: : Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, ||v||, v).

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview

N.VM.2: : Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview

N.VM.3: : Solve problems involving velocity and other quantities that can be represented by vectors.

2D Collisions

Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios. 5 Minute Preview

Golf Range

Try to get a hole in one by adjusting the velocity and launch angle of a golf ball. Explore the physics of projectile motion in a frictional or ideal setting. Horizontal and vertical velocity vectors can be displayed, as well as the path of the ball. The height of the golfer and the force of gravity are also adjustable. 5 Minute Preview

(Framing Text): : Perform operations on vectors.

N.VM. 4: : Add and subtract vectors.

N.VM. 4.a: : Add vectors end to end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview

Vectors

Manipulate the magnitudes and directions of two vectors to generate a sum and learn vector addition. The x and y components can be displayed, along with the dot product of the two vectors. 5 Minute Preview

N.VM. 4.b: : Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

Adding Vectors

Move, rotate, and resize two vectors in a plane. Find their resultant, both graphically and by direct computation. 5 Minute Preview

Vectors

N.VM. 4.c: : Understand vector subtraction v – w as v + (–w), where –w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.

Adding Vectors

Vectors

N.VM.5: : Multiply a vector by a scalar.

N.VM.5.a: : Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(vx , vy) = (cvx, cvy).

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

Vectors

N.VM.5.b: : Compute the magnitude of a scalar multiple cv using ||cv|| = |c|v. Compute the direction of cv knowing that when |c|v ≠ 0, the direction of cv is either along v (for c > 0) or against vs (for c < 0).

Vectors

N.CN: : Complex Number Systems

(Framing Text): : Perform arithmetic operations with complex numbers.

N.CN.3: : Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

(Framing Text): : Represent complex numbers and their operations on the complex plane.

N.CN.4: : Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

(Framing Text): : Use complex numbers in polynomial identities and equations.

N.CN.10: : Multiply complex numbers in polar form and use DeMoivre’s Theorem to find roots of complex numbers.

Points in the Complex Plane

Identify the imaginary and real coordinates of a point in the complex plane. Drag the point in the plane and investigate how the coordinates change in response. 5 Minute Preview

### A: : Algebra

A.REI: : Reasoning with Equations and Inequalities

(Framing Text): : Solve systems of equations.

A.REI.8.: : Represent a system of linear equations as a single matrix equation in a vector variable.

Solving Linear Systems (Matrices and Special Solutions)

Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (*x*, *y*) point to be a solution of an equation, or of a system of equations.
5 Minute Preview

A.REI.9.: : Find the inverse of a matrix, if it exists, and use it to solve systems of linear equations (using technology for matrices of dimension 3 x 3 or greater).

Solving Linear Systems (Matrices and Special Solutions)

Explore systems of linear equations, and how many solutions a system can have. Express systems in matrix form. See how the determinant of the coefficient matrix reveals how many solutions a system of equations has. Also, use a draggable green point to see what it means for an (*x*, *y*) point to be a solution of an equation, or of a system of equations.
5 Minute Preview

### F: : Functions

F.IF: : Interpreting Functions

(Framing Text): : Analyze functions using different representations.

F.IF.7: : Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

F.IF.7.d: : Graph rational functions, identifying zeros, asymptotes, and point discontinuities when suitable factorizations are available, and showing end behavior.

General Form of a Rational Function

Compare the equation of a rational function to its graph. Multiply or divide the numerator and denominator by linear factors and explore how the graph changes in response. 5 Minute Preview

Rational Functions

Compare the graph of a rational function to its equation. Vary the terms of the equation and explore how the graph is translated and stretched as a result. Examine the domain on a number line and compare it to the graph of the equation. 5 Minute Preview

F.IF.11: : Represent series algebraically, graphically, and numerically.

Arithmetic Sequences

Geometric Sequences

F.BF: : Building Functions

(Framing Text): : Build new functions from existing functions.

F.BF.4: : Find inverse functions.

F.BF.4.b: : Verify by composition that one function is the inverse of another.

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

F.BF.4.c: : Read values of an inverse function from a graph or a table, given that the function has an inverse.

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

F.BF.5: : Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Logarithmic Functions

Compare the equation of a logarithmic function to its graph. Change the base of the logarithmic function and examine how the graph changes in response. Use the line *y* = *x* to compare the associated exponential function.
5 Minute Preview

F.TF: : Trigonometric Functions

(Framing Text): : Prove and apply trigonometric identities.

F.TF.9: : Prove the addition and subtraction formulas for sine, cosine, and tangent, and use them to solve problems.

Simplifying Trigonometric Expressions

Choose the correct steps to simplify a trigonometric function. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview

Sum and Difference Identities for Sine and Cosine

Choose the correct steps to evaluate a trigonometric expression using sum and difference identities. Use step-by-step feedback to diagnose incorrect steps. 5 Minute Preview

### G: : Geometry

G.GPE: : Expressing Geometric Properties With Equations

(Framing Text): : Translate between the geometric description and the equation for a conic section.

G.GPE.2: : Derive the equation of a parabola given a focus and a directrix.

Parabolas

Explore parabolas in a conic section context. Find the relationship among the vertex, focus, and directrix of a parabola, and how that relates to its equation. 5 Minute Preview

G.GPE.3: : Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.

Ellipses

Compare the equation of an ellipse to its graph. Vary the terms of the equation of the ellipse and examine how the graph changes in response. Drag the vertices and foci, explore their Pythagorean relationship, and discover the string property. 5 Minute Preview

Hyperbolas

Compare the equation of a hyperbola to its graph. Vary the terms of the equation of the hyperbola. Examine how the graph of the hyperbola and its asymptotes changes in response. 5 Minute Preview

### S: : Statistics

S.CP: : Conditional Probability and the Rules of Probability

(Framing Text): : Understand independence and conditional probability and use them to interpret data.

S.CP.2: : Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

S.CP.3: : Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of B given A is the same as the probability of B.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

(Framing Text): : Use the rules of probability to compute probabilities of compound events in a uniform probability model.

S.CP.8: : Apply the general Multiplication Rule in a uniform probability model, P(A andB) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.

Independent and Dependent Events

Compare the theoretical and experimental probabilities of drawing colored marbles from a bag. Record results of successive draws to find the experimental probability. Perform the drawings with replacement of the marbles to study independent events, or without replacement to explore dependent events. 5 Minute Preview

S.CP.9: : Use permutations and combinations to compute probabilities of compound events and solve problems.

Binomial Probabilities

Find the probability of a number of successes or failures in a binomial experiment using a tree diagram, a bar graph, and direct calculation. 5 Minute Preview

Permutations and Combinations

Experiment with permutations and combinations of a number of letters represented by letter tiles selected at random from a box. Count the permutations and combinations using a dynamic tree diagram, a dynamic list of permutations, and a dynamic computation by the counting principle. 5 Minute Preview

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available January 1 and July 1.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote