- Home
- Find Gizmos
- Browse by Standard (CAN)
- Next Generation Science Standards
- Mathematics: Foundations of Mathematics: Grade 11

# Yukon Territory - Mathematics: Foundations of Mathematics: Grade 11

## WNCP Framework | Adopted: 2008

### 1: : Develop spatial sense and proportional reasoning.

1..A2: : Solve problems that involve scale diagrams, using proportional reasoning.

Dilations

Dilate a figure and investigate its resized image. See how scaling a figure affects the coordinates of its vertices, both in

### 2: : Develop spatial sense.

2..B1: : Derive proofs that involve the properties of angles and triangles.

Triangle Angle Sum

Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview

Triangle Inequalities

Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview

2..B2: : Solve problems that involve the properties of angles and triangles.

Concurrent Lines, Medians, and Altitudes

Explore the relationships between perpendicular bisectors, the circumscribed circle, angle bisectors, the inscribed circle, altitudes, and medians using a triangle that can be resized and reshaped. 5 Minute Preview

Similarity in Right Triangles

Divide a right triangle at the altitude to the hypotenuse to get two similar right triangles. Explore the relationship between the two triangles. 5 Minute Preview

Triangle Angle Sum

Measure the interior angles of a triangle and find the sum. Examine whether that sum is the same for all triangles. Also, discover how the measure of an exterior angle relates to the interior angle measures. 5 Minute Preview

Triangle Inequalities

Discover the inequalities related to the side lengths and angle measures of a triangle. Reshape and resize the triangle to confirm that these properties are true for all triangles. 5 Minute Preview

### 4: : Develop statistical reasoning.

4..D1: : Demonstrate an understanding of normal distribution, including:

4..D1.a: : standard deviation

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview

Real-Time Histogram

Try to click your mouse once every 2 seconds. The time interval between each click is recorded, as well as the error and percent error. Data can be displayed in a table, histogram, or scatter plot. Observe and measure the characteristics of the resulting distribution when large amounts of data are collected. 5 Minute Preview

Sight vs. Sound Reactions

Measure your reaction time by clicking your mouse as quickly as possible when visual or auditory stimuli are presented. The individual response times are recorded, as well as the mean and standard deviation for each test. A histogram of data shows overall trends in sight and sound response times. The type of test as well as the symbols and sounds used are chosen by the user. 5 Minute Preview

4..D2: : Interpret statistical data, using:

4..D2.a: : confidence intervals

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview

4..D2.b: : confidence levels

Polling: City

Poll residents in a large city to determine their response to a yes-or-no question. Estimate the actual percentage of yes votes in the whole city. Examine the results of many polls to help assess how reliable the results from a single poll are. See how the normal curve approximates a binomial distribution for large enough polls. 5 Minute Preview

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview

Populations and Samples

Compare sample distributions drawn from population distributions. Predict characteristics of a population distribution based on a sample distribution and examine how well a small sample represents a given population. 5 Minute Preview

4..D2.c: : margin of error.

Polling: City

Polling: Neighborhood

Conduct a phone poll of citizens in a small neighborhood to determine their response to a yes-or-no question. Use the results to estimate the sentiment of the entire population. Investigate how the error of this estimate becomes smaller as more people are polled. Compare random versus non-random sampling. 5 Minute Preview

### 5: : Develop algebraic and graphical reasoning through the study of relations.

5..E1: : Model and solve problems that involve systems of linear inequalities in two variables.

Linear Programming

Use the graph of the feasible region to find the maximum or minimum value of the objective function. Vary the coefficients of the objective function and vary the constraints. Explore how the graph of the feasible region changes in response. 5 Minute Preview

Systems of Linear Inequalities (Slope-intercept form)

Compare a system of linear inequalities to its graph. Vary the coefficients and inequality symbols in the system and explore how the boundary lines, shaded regions, and the intersection of the shaded regions change in response. 5 Minute Preview

5..E2: : Demonstrate an understanding of the characteristics of quadratic functions, including:

5..E2.a: : vertex

Quadratics in Factored Form

Investigate the factors of a quadratic through its graph and through its equation. Vary the roots of the quadratic and examine how the graph and the equation change in response. 5 Minute Preview

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Zap It! Game

Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview

5..E2.b: : intercepts

Graphs of Polynomial Functions

Study the graphs of polynomials up to the fourth degree. Vary the coefficients of the equation and investigate how the graph changes in response. Explore things like intercepts, end behavior, and even near-zero behavior. 5 Minute Preview

Zap It! Game

Adjust the values in a quadratic function, in vertex form or in polynomial form, to "zap" as many data points as possible. 5 Minute Preview

5..E2.d: : axis of symmetry.

Quadratics in Polynomial Form

Compare the graph of a quadratic to its equation in polynomial form. Vary the coefficients of the equation and explore how the graph changes in response. 5 Minute Preview

Quadratics in Vertex Form

Compare the graph of a quadratic to its equation in vertex form. Vary the terms of the equation and explore how the graph changes in response. 5 Minute Preview

Correlation last revised: 9/16/2020

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.

Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

How Free Gizmos Work

Start teaching with
**20-40 Free Gizmos**. See the full list.

Access **lesson materials** for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a **5 Minute Preview** and can only be used for 5 minutes a day.

**Free Gizmos change each semester.** The new collection will be available January 1 and July 1.

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote