- Home
- Find Gizmos
- Browse by Standard (CAN)
- West Virginia Standards
- Science: 8th Grade
Ontario - Science: 8th Grade
Ontario Curriculum | Adopted: 2007
C: : Cells
C.2: : investigate functions and processes of plant and animal cells;
C.2.2: : use a microscope correctly and safely to find and observe components of plant and animal cells (e.g., using an onion slice or a prepared slide of a protist) and make accurate drawings of their observations
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
C.2.4: : use scientific inquiry/experimentation skills to investigate the processes of osmosis and diffusion
Osmosis
Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview
C.2.5: : use appropriate science and technology vocabulary, including organelle, diffusion, osmosis, cell theory, selective permeability, membrane, stage, and eyepiece, in oral and written communication
Osmosis
Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview
RNA and Protein Synthesis
Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview
C.2.6: : use a variety of forms (e.g., oral, written, graphic, multimedia) to communicate with different audiences and for a variety of purposes (e.g., using the conventions of science, make a labelled drawing of a cell; create a slide show to explain the results of investigations into the processes of osmosis and diffusion)
Graphing Skills
Create a graph (bar graph, line graph, pie chart, or scatter plot) based on a given data set. Title the graph, label the axes, and choose a scale. Adjust the graph to fit the data, and then check your accuracy. The Gizmo can also be used to create a data table based on a given graph. 5 Minute Preview
C.3: : demonstrate an understanding of the basic structure and function of plant and animal cells and cell processes.
C.3.1: : demonstrate an understanding of the postulates of the cell theory (e.g., the cell is the basic unit of life; all cells come from pre-existing cells; all living things are made up of one or more cells)
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
C.3.2: : identify structures and organelles in cells, including the nucleus, cell membrane, cell wall, chloroplasts, vacuole, mitochondria, and cytoplasm, and explain the basic functions of each (e.g., the nucleus holds all the information needed to make every cell in the body)
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
RNA and Protein Synthesis
Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview
C.3.3: : compare the structure and function of plant and animal cells
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided. 5 Minute Preview
Cell Types
Explore a wide variety of cells, from bacteria to human neurons, using a compound light microscope. Select a sample to study, then focus on the sample using the coarse and fine focus controls of the microscope. Compare the structures found in different cells, then perform tests to see if the sample is alive. 5 Minute Preview
C.3.4: : explain the processes of diffusion and osmosis and their roles within a cell
Osmosis
Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
C.3.5: : identify unicellular organisms (e.g., amoebae) and multicellular organisms (e.g., hydra, invertebrates [worms], vertebrates [frogs]), and compare ways in which they meet their basic needs (e.g., nutrition, movement, gas exchange)
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium. 5 Minute Preview
SiA: : Systems in Action
SiA.2: : investigate a working system and the ways in which components of the system contribute to its desired function;
SiA.2.2: : investigate the work done in a variety of everyday activities and record the findings quantitatively (e.g., calculate the work done when lifting dumbbells by measuring the force required to move the dumbbell and multiplying by the distance the dumbbell moves)
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
SiA.2.3: : use scientific inquiry/experimentation skills to investigate mechanical advantage in a variety of mechanisms and simple machines
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
Levers
Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview
Wheel and Axle
Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview
SiA.2.4: : use technological problem-solving skills to investigate a system (e.g., an optical system, a mechanical system, an electrical system) that performs a function or meets a need
Trebuchet
Design your own trebuchet to fling a projectile at a castle wall. All of the dimensions of the trebuchet can be adjusted, as well as the masses of the counterweight and payload. Select a target on the Launch tab, or just see how far your projectile will go. 5 Minute Preview
SiA.2.6: : use appropriate science and technology vocabulary, including mechanical advantage, input, output, friction, gravity, forces, and efficiency, in oral and written communication
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
SiA.2.7: : use a variety of forms (e.g., oral, written, graphic, multimedia) to communicate with different audiences and for a variety of purposes (e.g., using appropriate mathematical conventions, create a graph to represent changes in mechanical advantage when certain factors in a mechanism are manipulated)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Ocean Mapping
Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow. 5 Minute Preview
SiA.3: : demonstrate an understanding of different types of systems and the factors that contribute to their safe and efficient operation.
SiA.3.4: : compare, using examples, the scientific definition with the everyday use of the terms work, force, energy, and efficiency
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
Inclined Plane - Sliding Objects
Investigate the energy and motion of a block sliding down an inclined plane, with or without friction. The ramp angle can be varied and a variety of materials for the block and ramp can be used. Potential and kinetic energy are reported as the block slides down the ramp. Two experiments can be run simultaneously to compare results as factors are varied. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
SiA.3.5: : understand and use the formula work = force × distance (W = F × d) to establish the relationship between work, force, and distance moved parallel to the force in simple systems
Ants on a Slant (Inclined Plane)
Lift food using ants with the help of a slanted stick. The steepness of the stick, the number of ants, and the size of the item being lifted can be varied. Observe the effect of friction on sliding objects. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
SiA.3.6: : calculate the mechanical advantage (MA = force needed without a simple machine divided by force needed with a simple machine) of various mechanical systems (e.g., a wheelbarrow allows a smaller force to lift a larger weight, a hockey stick allows a short movement of hands to move the blade a larger distance, a simple fixed pulley system redirects the effort force)
Levers
Use a lever to lift a pig, turkey, or sheep. A strongman provides up to 1000 newtons of effort. The fulcrum, strongman, and animals can be moved to any position to create first-, second-, or third-class levers. 5 Minute Preview
Pulley Lab
Use a pulley system to lift a heavy weight to a certain height. Measure the force required to lift the weight using up to three fixed and three movable pulleys. The weight to be lifted and the efficiency of the pulley system can be adjusted, and the height of the weight and the total input distance are reported. 5 Minute Preview
Wheel and Axle
Use a wheel and axle to move a heavy load. Find out how many athletes it takes to move the load under different conditions. The radii of the wheel and the axle can be adjusted to help study mechanical advantage. 5 Minute Preview
SiA.3.7: : explain ways in which mechanical systems produce heat, and describe ways to make these systems more efficient (e.g., friction produces heat, which can be reduced by lubrication)
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
SiA.3.9: : identify social factors that influence the evolution of a system (e.g., growing concern over the amount of waste creates a need for recycling centres, and the recycling centres must grow as population and waste increase; the desire to make tasks easier creates a need for pulley systems, gear systems, and hydraulic and pneumatic systems; changes in traditional work hours created by technological advances can influence changes in a child care system)
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy. 5 Minute Preview
F: : Fluids
F.2: : investigate the properties of fluids;
F.2.3: : investigate and compare the density of a variety of liquids (e.g., water, salt water, corn syrup, liquid soap)
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
F.2.8: : use a variety of forms (e.g., oral, written, graphic, multimedia) to communicate with different audiences and for a variety of purposes (e.g., using appropriate scientific and/or technological conventions, create a technical drawing of a pneumatic/hydraulic device; create a brochure or a multimedia presentation outlining safe and unsafe uses of the device that was modelled)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
Ocean Mapping
Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow. 5 Minute Preview
F.3: : demonstrate an understanding of the properties and uses of fluids.
F.3.2: : describe the relationship between mass, volume, and density as a property of matter
Density Experiment: Slice and Dice
Drop a chunk of material in a beaker of water and observe whether it sinks or floats. Cut the chunk into smaller pieces of any size, and observe what happens as they are dropped in the beaker. The mass and volume of each chunk can be measured to gain a clear understanding of density and buoyancy. 5 Minute Preview
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
Mineral Identification
Observe and measure the properties of a mineral sample, and then use a key to identify the mineral. Students can observe the color, luster, shape, density, hardness, streak, and reaction to acid for each mineral. There are 26 mineral samples to identify. 5 Minute Preview
F.3.3: : explain the difference between solids, liquids, and gases in terms of density, using the particle theory of matter (e.g., in general, solids are more dense than liquids, which are more dense than gases)
Temperature and Particle Motion
Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared. 5 Minute Preview
F.3.5: : determine the buoyancy of an object, given its density, in a variety of fluids (e.g., less dense objects float, more dense objects sink)
Archimedes' Principle
Place weights into a boat and see how far the boat sinks into a tank of liquid. The depth of the boat can be measured, as well as the amount of liquid displaced. The dimensions of the boat and the density of the liquid can be adjusted. See how much weight the boat can hold before it sinks to the bottom! 5 Minute Preview
Density Experiment: Slice and Dice
Drop a chunk of material in a beaker of water and observe whether it sinks or floats. Cut the chunk into smaller pieces of any size, and observe what happens as they are dropped in the beaker. The mass and volume of each chunk can be measured to gain a clear understanding of density and buoyancy. 5 Minute Preview
Density Laboratory
With a scale to measure mass, a graduated cylinder to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation. 5 Minute Preview
Density via Comparison
Using four beakers of liquids with known densities, estimate the density of a variety of objects. Place each object into each beaker to see whether it sinks or floats, and then use this information to compare the densities of the objects. 5 Minute Preview
Determining Density via Water Displacement
Drop objects in a beaker that is filled with water, and measure the water that flows over the edge. Using Archimedes' principle, determine the density of objects based on the amount of displaced water. 5 Minute Preview
WS: : Water Systems
WS.2: : investigate factors that affect local water quality;
WS.2.6: : use appropriate science and technology vocabulary, including water table, aquifer, polar ice-cap, and salinity, in oral and written communication
Porosity
Pour water on a variety of sediment samples to find how much water can be absorbed by the sample (porosity) and how easily water flows through the sample (permeability). 5 Minute Preview
WS.2.7: : use a variety of forms (e.g., oral, written, graphic, multimedia) to communicate with different audiences and for a variety of purposes (e.g. using appropriate scientific conventions, draw a labelled diagram of a water treatment facility; create a brochure about the safe use of wells and septic tanks)
Hearing: Frequency and Volume
Test your hearing range by listening to low-, medium-, and high-frequency sounds. Compare the relative loudness of sounds at each frequency to create an equal-loudness curve. In a quiet room, measure your threshold of audibility for each frequency, and compare your results to others. The volume of each sound can be adjusted. 5 Minute Preview
WS.3: : demonstrate an understanding of the characteristics of the earth?s water systems and the influence of water systems on a specific region.
WS.3.4: : identify factors (e.g., annual precipitation, temperature, climate change) that affect the size of glaciers and polar ice-caps, and describe the effects of these changes on local and global water systems
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes. 5 Minute Preview
WS.3.5: : explain changes in atmospheric conditions caused by the presence of bodies of water (e.g., differences in temperature near large bodies of water; microclimates; storms off coastal areas)
Coastal Winds and Clouds - Metric
Observe daily weather conditions in a coastal region. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes. 5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with 20-40 Free Gizmos. See the full list.
Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.
Free Gizmos change each semester. The new collection will be available January 1 and July 1.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote