Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Mississippi Standards
  • Science: Chemistry

Mississippi - Science: Chemistry

College- and Career-Readiness Standards | Adopted: 2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

DCI.CHE.1: : Mathematical and Computational Analysis


1.1: : Mathematical and computational analysis is a key component of scientific investigation and prediction of outcomes. These components create a more student-centered classroom.

CHE.1: : Students will use mathematical and computational analysis to evaluate problems.

CHE.1.1: : Use dimensional analysis (factor/label) and significant figures to convert units and solve problems.

Screenshot of Moles

Moles

Understand the definition of a mole and determine the Avogadro constant by adding atoms or formula units to a balance until the mass in grams is equal to the atomic or formula mass. Manipulate a conceptual model to understand how the number of particles, the number of moles, and the mass are related. Then use dimensional analysis to convert between particles, moles, and mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Stoichiometry

Stoichiometry

Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Unit Conversions

Unit Conversions

Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Unit Conversions 2 - Scientific Notation and Significant Digits

Unit Conversions 2 - Scientific Notation and Significant Digits

Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.1.2: : Design and conduct experiments using appropriate measurements, significant figures, graphical analysis to analyze data.

Screenshot of Unit Conversions 2 - Scientific Notation and Significant Digits

Unit Conversions 2 - Scientific Notation and Significant Digits

Use the Unit Conversions Gizmo to explore the concepts of scientific notation and significant digits. Convert numbers to and from scientific notation. Determine the number of significant digits in a measured value and in a calculation. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.2: : Atomic Theory


2.1: : Atomic theory is the foundation of modern chemistry concepts. Students must be presented with a solid foundation of the atom and its components. These concepts lead to an understanding of the interactions of these components to explain macro-observations of the world.

CHE.2: : Students will demonstrate an understanding of the atomic structure and the historical developments leading to modern atomic theory.

CHE.2.1: : Investigate the historical progression leading to the modern atomic theory, including, but not limited to, work done by Dalton, Rutherford’s gold foil experiment, Thomson’s cathode ray experiment, Millikan’s oil drop experiment, and Bohr’s interpretation of bright line spectra.

Screenshot of Bohr Model of Hydrogen

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Bohr Model: Introduction

Bohr Model: Introduction

Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.2.2: : Construct models (e.g., ball and stick, online simulations, mathematical computations) of atomic nuclei to explain the abundance weighted average (relative mass) of elements and isotopes on the published mass of elements.

Screenshot of Average Atomic Mass

Average Atomic Mass

The atomic mass for each element listed in the periodic table is actually the weighted average mass of all of the different isotopes of the element. In the Average Atomic Mass Gizmo, use a mass spectrometer to separate an element into its isotopes. Then, calculate the average atomic mass by considering the mass and abundance of each isotope. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.2.3: : Investigate absorption and emission spectra to interpret explanations of electrons at discrete energy levels using tools such as online simulations, spectrometers, prisms, flame tests, and discharge tubes. Explore both laboratory experiments and real-world examples.

Screenshot of Bohr Model of Hydrogen

Bohr Model of Hydrogen

Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Bohr Model: Introduction

Bohr Model: Introduction

Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.2.4: : Research appropriate sources to evaluate the way absorption and emission spectra are used to study astronomy and the formation of the universe.

Screenshot of Big Bang Theory - Hubble's Law

Big Bang Theory - Hubble's Law

Follow in the footsteps of Edwin Hubble to discover evidence supporting the Big Bang Theory. First, observe Cepheid variable stars in different galaxies to determine their distances. Then, measure the redshift from these galaxies to determine their recessional velocity. Create a scatterplot of velocity vs. distance and relate this to an expanding universe. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Star Spectra

Star Spectra

Analyze the spectra of a variety of stars. Determine the elements that are represented in each spectrum, and use this information to infer the temperature and classification of the star. Look for unusual features such as redshifted stars, nebulae, and stars with large planets. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.3: : Periodic Table


3.1: : Modern chemistry is based on the predictability of atomic behavior. Periodic patterns in elements led to the development of the periodic table. Electron configuration is a direct result of this periodic behavior. The predictable behavior of electrons has led to the discovery of new compounds, elements, and atomic interactions. Predictability of atom behavior is a key to understanding ionic and covalent bonding and production of compounds or molecules.

CHE.3: : Students will demonstrate an understanding of the periodic table as a systematic representation to predict properties of elements.

CHE.3.1: : Explore and communicate the organization of the periodic table, including history, groups, families, family names, metals, nonmetals, metalloids, and transition metals.

Screenshot of Periodic Trends

Periodic Trends

Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.3.2: : Analyze properties of atoms and ions (e.g., metal/nonmetal/metalloid behavior, electrical/heat conductivity, electronegativity and electron affinity, ionization energy, and atomic/ionic radii) using periodic trends of elements based on the periodic table.

Screenshot of Periodic Trends

Periodic Trends

Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.3.3: : Analyze the periodic table to identify quantum numbers (e.g., valence shell electrons, energy level, orbitals, sublevels, and oxidation numbers).

Screenshot of Electron Configuration

Electron Configuration

Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Periodic Trends

Periodic Trends

Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.4: : Bonding


4.1: : A firm understanding of bonding is necessary to further development of the basic chemical concepts of compounds and chemical interactions.

CHE.4: : Students will demonstrate an understanding of the types of bonds and resulting atomic structures for the classification of chemical compounds.

CHE.4.1: : Develop and use models (e.g., Lewis dot, 3-D ball-stick, 3-D printing, or simulation programs such as PhET) to predict the type of bonding between atoms and the shape of simple compounds.

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Molecule Builder

Molecule Builder

Create molecules using building blocks of carbon, hydrogen, oxygen, nitrogen, and other elements. Connect atoms by bonds, then create double or triple bonds if desired. For each completed molecule, write the chemical formula and, if the molecule is included in the database, observe the 3D structure. Create a variety of challenge molecules including cyclic molecules and isomers. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electrons and Chemical Reactions - High School

Electrons and Chemical Reactions - High School

The Secret Service has arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and examine the evidence. Students learn about electrons and chemical reactions to recreate the methods used to make the coins and prepare evidence for the court case. Video Preview


Lesson Info
STEM Cases

CHE.4.2: : Use models such as Lewis structures and ball and stick models to depict the valence electrons and their role in the formation of ionic and covalent bonds.

Screenshot of Covalent Bonds

Covalent Bonds

Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electrons and Chemical Reactions - High School

Electrons and Chemical Reactions - High School

The Secret Service has arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and examine the evidence. Students learn about electrons and chemical reactions to recreate the methods used to make the coins and prepare evidence for the court case. Video Preview


Lesson Info
STEM Cases

CHE.4.3: : Predict the ionic or covalent nature of different atoms based on electronegativity trends and/or position on the periodic table.

Screenshot of Polarity and Intermolecular Forces

Polarity and Intermolecular Forces

Combine various metal and nonmetal atoms to observe how the electronegativity difference determines the polarity of chemical bonds. Place molecules into an electric field to experimentally determine if they are polar or nonpolar. Create different mixtures of polar and nonpolar molecules to explore the intermolecular forces that arise between them. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.4.4: : Use models and oxidation numbers to predict the type of bond, shape of the compound, and the polarity of the compound.

Screenshot of Polarity and Intermolecular Forces

Polarity and Intermolecular Forces

Combine various metal and nonmetal atoms to observe how the electronegativity difference determines the polarity of chemical bonds. Place molecules into an electric field to experimentally determine if they are polar or nonpolar. Create different mixtures of polar and nonpolar molecules to explore the intermolecular forces that arise between them. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Sticky Molecules

Sticky Molecules

Learn about molecular polarity and how polarity gives rise to intermolecular forces. Measure four macroscopic properties of liquids (cohesion, adhesion, surface tension, and capillary rise). Compare these properties for different liquids and relate them to whether the substances are polar or nonpolar. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.4.5: : Use models of simple hydrocarbons to exemplify structural isomerism.

Screenshot of Molecule Builder

Molecule Builder

Create molecules using building blocks of carbon, hydrogen, oxygen, nitrogen, and other elements. Connect atoms by bonds, then create double or triple bonds if desired. For each completed molecule, write the chemical formula and, if the molecule is included in the database, observe the 3D structure. Create a variety of challenge molecules including cyclic molecules and isomers. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.5: : Naming Compounds


5.1: : Polyatomic ions (radicals) and oxidation numbers are used to predict how metallic ions, nonmetals, and transition metals are used in naming compounds.

CHE.5: : Students will investigate and understand the accepted nomenclature used to identify the name and chemical formulas of compounds.

CHE.5.2: : Generate formulas of ionic and covalent compounds from compound names. Discuss compounds in everyday life and compile lists and uses of these chemicals.

Screenshot of Ionic Bonds

Ionic Bonds

Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.6: : Chemical Reactions


6.1: : Understanding chemical reactions and predicting products of these reactions is essential to student success.

CHE.6: : Students will demonstrate an understanding of the types, causes, and effects of chemical reactions.

CHE.6.1: : Develop and use models to predict the products of chemical reactions (e.g., synthesis reactions; single replacement; double displacement; and decomposition, including exceptions such as decomposition of hydroxides, chlorates, carbonates, and acids). Discuss and/or compile lists of reactions used in everyday life.

Screenshot of Balancing Chemical Equations

Balancing Chemical Equations

Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.6.2: : Plan, conduct, and communicate the results of investigations to demonstrate different types of simple chemical reactions.

Screenshot of Balancing Chemical Equations

Balancing Chemical Equations

Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Limiting Reactants

Limiting Reactants

Explore the concepts of limiting reactants, excess reactants, and theoretical yield in a chemical reaction. Select one of two different reactions, choose the number of molecules of each reactant, and then observe the products created and the reactants left over. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electrons and Chemical Reactions - High School

Electrons and Chemical Reactions - High School

The Secret Service has arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and examine the evidence. Students learn about electrons and chemical reactions to recreate the methods used to make the coins and prepare evidence for the court case. Video Preview


Lesson Info
STEM Cases

CHE.6.3: : Use mathematics and computational analysis to represent the ratio of reactants and products in terms of masses, molecules, and moles (stoichiometry).

Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Moles

Moles

Understand the definition of a mole and determine the Avogadro constant by adding atoms or formula units to a balance until the mass in grams is equal to the atomic or formula mass. Manipulate a conceptual model to understand how the number of particles, the number of moles, and the mass are related. Then use dimensional analysis to convert between particles, moles, and mass. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Stoichiometry

Stoichiometry

Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Electrons and Chemical Reactions - High School

Electrons and Chemical Reactions - High School

The Secret Service has arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and examine the evidence. Students learn about electrons and chemical reactions to recreate the methods used to make the coins and prepare evidence for the court case. Video Preview


Lesson Info
STEM Cases
Screenshot of Water Crisis - High School

Water Crisis - High School

There has been an outbreak of legionnaires’ disease in a small town. This disease is caused by legionella bacteria that proliferate in contaminated water supplies. Students take on the role of an environmental chemist to investigate the source of legionella and use stoichiometry to decontaminate the water supply and remediate the disease outbreak. Video Preview


Lesson Info
STEM Cases

CHE.6.4: : Use mathematics and computational analysis to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Give real-world examples (e.g., burning wood).

Screenshot of Balancing Chemical Equations

Balancing Chemical Equations

Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Changes

Chemical Changes

Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Chemical Equations

Chemical Equations

Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.6.6: : Use mathematics and computational analysis to support the concept of percent yield and limiting reagent.

Screenshot of Limiting Reactants

Limiting Reactants

Explore the concepts of limiting reactants, excess reactants, and theoretical yield in a chemical reaction. Select one of two different reactions, choose the number of molecules of each reactant, and then observe the products created and the reactants left over. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.6.7: : Plan and conduct a controlled scientific investigation to produce mathematical evidence to predict and confirm the limiting reagent and percent yield in the reaction. Analyze quantitative data, draw conclusions, and communicate findings. Compare and analyze class data for validity.

Screenshot of Limiting Reactants

Limiting Reactants

Explore the concepts of limiting reactants, excess reactants, and theoretical yield in a chemical reaction. Select one of two different reactions, choose the number of molecules of each reactant, and then observe the products created and the reactants left over. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.7: : Gas Laws


7.1: : The comparison and development of the molecular states of matter are an integral part of understanding matter. Pressure, volume, and temperature are imperative to understanding the states of matter.

CHE.7: : Students will demonstrate an understanding of the structure and behavior of gases.

CHE.7.1: : Analyze the behavior of ideal and real gases in terms of pressure, volume, temperature, and number of particles.

Screenshot of Boyle's Law and Charles's Law

Boyle's Law and Charles's Law

Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles's Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source. Gay-Lussac's law relating pressure to temperature can also be explored by keeping the volume constant. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ideal Gas Law

Ideal Gas Law

Explore relationships between amount, temperature, pressure, and volume for an ideal gas in a chamber with a moveable piston. Discover rules of proportionality contained in Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. Use these relationships to derive the ideal gas law and calculate the value of the ideal gas constant. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.7.3: : Analyze and interpret heating curve graphs to explain the energy relationship between states of matter (e.g., thermochemistry-water heating from -20°C to 120°C).

Screenshot of Phase Changes

Phase Changes

Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.7.4: : Use mathematical computations to describe the relationships comparing pressure, temperature, volume, and number of particles, including Boyle’s law, Charles’s law, Dalton’s law, combined gas laws, and ideal gas laws.

Screenshot of Boyle's Law and Charles's Law

Boyle's Law and Charles's Law

Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles's Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source. Gay-Lussac's law relating pressure to temperature can also be explored by keeping the volume constant. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Pressure

Equilibrium and Pressure

Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ideal Gas Law

Ideal Gas Law

Explore relationships between amount, temperature, pressure, and volume for an ideal gas in a chamber with a moveable piston. Discover rules of proportionality contained in Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. Use these relationships to derive the ideal gas law and calculate the value of the ideal gas constant. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.7.5: : Use an engineering design process and online simulations or lab investigations to design and model the results of controlled scientific investigations to produce mathematical evidence that confirms the gas-laws relationships.

Screenshot of Ideal Gas Law

Ideal Gas Law

Explore relationships between amount, temperature, pressure, and volume for an ideal gas in a chamber with a moveable piston. Discover rules of proportionality contained in Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. Use these relationships to derive the ideal gas law and calculate the value of the ideal gas constant. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.8: : Solutions


8.1: : Solutions exist as solids, liquids, or gases. Solution concentration is expressed by specifying relative amounts of solute to solvent.

CHE.8: : Students will demonstrate an understanding of the nature of properties of various types of chemical solutions.

CHE.8.1: : Use mathematical and computational analysis to quantitatively express the concentration of solutions using the concepts such as molarity, percent by mass, and dilution.

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Water Crisis - High School

Water Crisis - High School

There has been an outbreak of legionnaires’ disease in a small town. This disease is caused by legionella bacteria that proliferate in contaminated water supplies. Students take on the role of an environmental chemist to investigate the source of legionella and use stoichiometry to decontaminate the water supply and remediate the disease outbreak. Video Preview


Lesson Info
STEM Cases

CHE.8.3: : Analyze and interpret data to predict the effect of temperature and pressure on solids and gases dissolved in water.

Screenshot of Colligative Properties

Colligative Properties

Determine how the physical properties of a solvent are dependent on the number of solute particles present. Measure the vapor pressure, boiling point, freezing point, and osmotic pressure of pure water and a variety of solutions. Compare the effects of four solutes (sucrose, sodium chloride, calcium chloride, and potassium chloride) on these physical properties. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Freezing Point of Salt Water

Freezing Point of Salt Water

Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Solubility and Temperature

Solubility and Temperature

Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.9: : Acids and Bases (Enrichment)


CHE.9: : Students will understand the nature and properties of acids, bases, and salt solutions.

CHE.9.1: : Analyze and interpret data to describe the properties of acids, bases, and salts.

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis

pH Analysis

Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ocean Carbon Equilibrium - High School

Ocean Carbon Equilibrium - High School

Mussel farmers in the Arctic Ocean have reported problems with their mussels. They have noticed that the mussel shells have eroded and become brittle. Students take on the role of a marine chemist to analyze the changes to ocean carbon chemistry and equilibrium to determine the cause of the mussel shell erosion. Video Preview


Lesson Info
STEM Cases

CHE.9.2: : Analyze and interpret data to identify differences between strong and weak acids and bases (i.e., dissociation).

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.9.3: : Plan and conduct investigations using the pH scale to classify acid and base solutions.

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis

pH Analysis

Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of pH Analysis: Quad Color Indicator

pH Analysis: Quad Color Indicator

Test the acidity of many common everyday substances using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.9.5: : Use mathematical and computational thinking to calculate pH from the hydrogen-ion concentration.

Screenshot of Titration

Titration

Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.10: : Thermochemistry (Enrichment)


CHE.10: : Students will understand that energy is exchanged or transformed in all chemical reactions.

CHE.10.1: : Construct explanations to explain how temperature and heat flow in terms of the motion of molecules (or atoms).

Screenshot of Phase Changes

Phase Changes

Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.10.2: : Classify chemical reactions and phase changes as exothermic or endothermic based on enthalpy values. Use a graphical representation to illustrate the energy changes involved.

Screenshot of Reaction Energy

Reaction Energy

Exothermic chemical reactions release energy, while endothermic reactions absorb energy. But what causes some reactions to be exothermic, and others to be endothermic? In this simulation, compare the energy absorbed in breaking bonds to the energy released in forming bonds to determine if a reaction will be exothermic or endothermic. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.10.3: : Analyze and interpret data from energy diagrams and investigations to support claims that the amount of energy released or absorbed during a chemical reaction depends on changes in total bond energy.

Screenshot of Reaction Energy

Reaction Energy

Exothermic chemical reactions release energy, while endothermic reactions absorb energy. But what causes some reactions to be exothermic, and others to be endothermic? In this simulation, compare the energy absorbed in breaking bonds to the energy released in forming bonds to determine if a reaction will be exothermic or endothermic. 5 Minute Preview


Lesson Info
Launch Gizmo

CHE.10.4: : Use mathematical and computational thinking to solve problems involving heat flow and temperature changes, using known values of specific heat and latent heat of phase change.

Screenshot of Calorimetry Lab

Calorimetry Lab

Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.11: : Equilibrium (Enrichment)


CHE.11: : Students will understand that chemical equilibrium is a dynamic process at the molecular level.

CHE.11.1: : Construct explanations to explain how to use Le Chatelier’s principle to predict the effect of changes in concentration, temperature, and pressure.

Screenshot of Equilibrium and Pressure

Equilibrium and Pressure

Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ocean Carbon Equilibrium - High School

Ocean Carbon Equilibrium - High School

Mussel farmers in the Arctic Ocean have reported problems with their mussels. They have noticed that the mussel shells have eroded and become brittle. Students take on the role of a marine chemist to analyze the changes to ocean carbon chemistry and equilibrium to determine the cause of the mussel shell erosion. Video Preview


Lesson Info
STEM Cases

CHE.11.2: : Predict when equilibrium is established in a chemical reaction.

Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Pressure

Equilibrium and Pressure

Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Ocean Carbon Equilibrium - High School

Ocean Carbon Equilibrium - High School

Mussel farmers in the Arctic Ocean have reported problems with their mussels. They have noticed that the mussel shells have eroded and become brittle. Students take on the role of a marine chemist to analyze the changes to ocean carbon chemistry and equilibrium to determine the cause of the mussel shell erosion. Video Preview


Lesson Info
STEM Cases

CHE.11.3: : Use mathematical and computational thinking to calculate an equilibrium constant expression for a reaction.

Screenshot of Equilibrium and Concentration

Equilibrium and Concentration

Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Equilibrium and Pressure

Equilibrium and Pressure

Observe how reactants and products interact in reversible reactions. The amounts of each substance can be manipulated, as well as the pressure on the chamber. This lesson focuses on partial pressures, Dalton's law, and Le Chatelier's principle. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.CHE.12: : Organic Nomenclature (Enrichment)


CHE.12: : Students will understand that the bonding characteristics of carbon allow the formation of many different organic molecules with various sizes, shapes, and chemical properties.

CHE.12.1: : Construct explanations to explain the bonding characteristics of carbon that result in the formation of basic organic molecules.

Screenshot of Molecule Builder

Molecule Builder

Create molecules using building blocks of carbon, hydrogen, oxygen, nitrogen, and other elements. Connect atoms by bonds, then create double or triple bonds if desired. For each completed molecule, write the chemical formula and, if the molecule is included in the database, observe the 3D structure. Create a variety of challenge molecules including cyclic molecules and isomers. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 5/19/2025

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap