Tennessee - Science: Chemistry I
Academic Standards | Adopted: 2016
CHEM1.PS1: : Matter and Its Interactions
CHEM1.PS1.1: : Understand and be prepared to use values specific to chemical processes: the mole, molar mass, molarity, and percent composition.

Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview

Moles
Understand the definition of a mole and determine the Avogadro constant by adding atoms or formula units to a balance until the mass in grams is equal to the atomic or formula mass. Manipulate a conceptual model to understand how the number of particles, the number of moles, and the mass are related. Then use dimensional analysis to convert between particles, moles, and mass. 5 Minute Preview

Stoichiometry
Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied. 5 Minute Preview
CHEM1.PS1.2: : Demonstrate that atoms, and therefore mass, are conserved during a chemical reaction by balancing chemical equations.

Balancing Chemical Equations
Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview

Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview

Electrons and Chemical Reactions - High School
The Secret Service has arrested suspects accused of counterfeiting coins from 1915 valued at $50,000 each. The students act as a forensic scientist to investigate the crime scene and examine the evidence. Students learn about electrons and chemical reactions to recreate the methods used to make the coins and prepare evidence for the court case. Video Preview
CHEM1.PS1.3: : Perform stoichiometric calculations involving the following relationships: mole-mole; mass-mass; mole-mass; mole-particle; and mass-particle. Show a qualitative understanding of the phenomenon of percent yield, limiting, and excess reagents in a chemical reaction through pictorial and conceptual examples (states of matter liquid and solid; excluding volume of gasses).

Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview

Limiting Reactants
Explore the concepts of limiting reactants, excess reactants, and theoretical yield in a chemical reaction. Select one of two different reactions, choose the number of molecules of each reactant, and then observe the products created and the reactants left over. 5 Minute Preview

Moles
Understand the definition of a mole and determine the Avogadro constant by adding atoms or formula units to a balance until the mass in grams is equal to the atomic or formula mass. Manipulate a conceptual model to understand how the number of particles, the number of moles, and the mass are related. Then use dimensional analysis to convert between particles, moles, and mass. 5 Minute Preview

Stoichiometry
Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied. 5 Minute Preview
CHEM1.PS1.4: : Use the reactants in a chemical reaction to predict the products and identify reaction classes (synthesis, decomposition, combustion, single replacement, double replacement).

Balancing Chemical Equations
Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data. 5 Minute Preview

Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass. 5 Minute Preview

Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium. 5 Minute Preview
CHEM1.PS1.5: : Conduct investigations to explore and characterize the behavior of gases (pressure, volume, temperature), develop models to represent this behavior, and construct arguments to explain this behavior. Evaluate the relationship (qualitatively and quantitatively) at STP between pressure and volume (Boyle’s law), temperature and volume (Charles’s law), temperature and pressure (Gay-Lussac law), and moles and volume (Avogadro’s law), and evaluate and explain these relationships with respect to kinetic-molecular theory. Be able to understand, establish, and predict the relationships between volume, temperature, and pressure using combined gas law both qualitatively and quantitatively.

Boyle's Law and Charles's Law
Investigate the properties of an ideal gas by performing experiments in which the temperature is held constant (Boyle's Law), and others in which the pressure remains fixed (Charles's Law). The pressure is controlled through the placement of masses on the lid of the container, and temperature is controlled with an adjustable heat source. Gay-Lussac's law relating pressure to temperature can also be explored by keeping the volume constant. 5 Minute Preview

Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability. 5 Minute Preview

Ideal Gas Law
Explore relationships between amount, temperature, pressure, and volume for an ideal gas in a chamber with a moveable piston. Discover rules of proportionality contained in Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. Use these relationships to derive the ideal gas law and calculate the value of the ideal gas constant. 5 Minute Preview
CHEM1.PS1.6: : Use the ideal gas law, PV = nRT, to algebraically evaluate the relationship among the number of moles, volume, pressure, and temperature for ideal gases.

Ideal Gas Law
Explore relationships between amount, temperature, pressure, and volume for an ideal gas in a chamber with a moveable piston. Discover rules of proportionality contained in Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. Use these relationships to derive the ideal gas law and calculate the value of the ideal gas constant. 5 Minute Preview
CHEM1.PS1.9: : Draw models (qualitative models such as pictures or diagrams) to demonstrate understanding of radioactive stability and decay. Understand and differentiate between fission and fusion reactions. Use models (graphs or tables) to explain the concept of half-life and its use in determining the age of materials (such as radiometric dating).

Half-life
Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives. 5 Minute Preview

Nuclear Decay
Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview

Nuclear Reactions
Explore examples of nuclear fusion and fission reactions. Follow the steps of the proton-proton chain, CNO cycle, and fission of uranium-235. Write balanced nuclear equations for each step, and compare the energy produced in each process. 5 Minute Preview
CHEM1.PS1.10: : Compare alpha, beta, and gamma radiation in terms of mass, charge, and penetrating power. Identify examples of applications of different radiation types in everyday life (such as its applications in cancer treatment).

Nuclear Decay
Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles. 5 Minute Preview
CHEM1.PS1.12: : Explain the origin and organization of the Periodic Table. Predict chemical and physical properties of main group elements (reactivity, number of subatomic particles, ion charge, ionization energy, atomic radius, and electronegativity) based on location on the periodic table. Construct an argument to describe how the quantum mechanical model of the atom (e.g., patterns of valence and inner electrons) defines periodic properties. Use the periodic table to draw Lewis dot structures and show understanding of orbital notations through drawing and interpreting graphical representations (i.e., arrows representing electrons in an orbital).

Covalent Bonds
Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview

Electron Configuration
Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table. 5 Minute Preview

Element Builder
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given. 5 Minute Preview

Ionic Bonds
Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview

Periodic Trends
Explore trends in atomic radius, ionization energy, and electron affinity in the periodic table. Measure atomic radius with a ruler and model ionization energy and electron affinity by exploring how easy it is to remove electrons and how strongly atoms attract additional electrons. View these properties on the whole periodic table to see how they vary across periods and down groups. 5 Minute Preview
CHEM1.PS1.15: : Investigate, describe, and mathematically determine the effect of solute concentration on vapor pressure using the solute’s van ’t Hoff factor on freezing point depression and boiling point elevation.

Colligative Properties
Determine how the physical properties of a solvent are dependent on the number of solute particles present. Measure the vapor pressure, boiling point, freezing point, and osmotic pressure of pure water and a variety of solutions. Compare the effects of four solutes (sucrose, sodium chloride, calcium chloride, and potassium chloride) on these physical properties. 5 Minute Preview
CHEM1.PS2: : Motion and Stability: Forces and Interactions
CHEM1.PS2.1: : Draw, identify, and contrast graphical representations of chemical bonds (ionic, covalent, and metallic) based on chemical formulas. Construct and communicate explanations to show that atoms combine by transferring or sharing electrons.

Covalent Bonds
Choose a substance, and then move electrons between atoms to form covalent bonds and build molecules. Observe the orbits of shared electrons in single, double, and triple covalent bonds. Compare the completed molecules to the corresponding Lewis diagrams. 5 Minute Preview

Ionic Bonds
Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed. 5 Minute Preview
CHEM1.PS2.2: : Understand that intermolecular forces created by the unequal distribution of charge result in varying degrees of attraction between molecules. Compare and contrast the intermolecular forces (hydrogen bonding, dipole-dipole bonding, and London dispersion forces) within different types of simple substances (only those following the octet rule) and predict and explain their effect on chemical and physical properties of those substances using models or graphical representations.

Melting Points
Every substance has unique transition points, or temperatures at which one phase (solid, liquid, or gas) transitions to another. Use a realistic melting point apparatus to measure the melting points, boiling points, and/or sublimation points of different substances and observe what these phase changes look like at the microscopic level. Based on the transition points, make inferences about the relative strengths of the forces holding these substances together. 5 Minute Preview

Polarity and Intermolecular Forces
Combine various metal and nonmetal atoms to observe how the electronegativity difference determines the polarity of chemical bonds. Place molecules into an electric field to experimentally determine if they are polar or nonpolar. Create different mixtures of polar and nonpolar molecules to explore the intermolecular forces that arise between them. 5 Minute Preview

Sticky Molecules
Learn about molecular polarity and how polarity gives rise to intermolecular forces. Measure four macroscopic properties of liquids (cohesion, adhesion, surface tension, and capillary rise). Compare these properties for different liquids and relate them to whether the substances are polar or nonpolar. 5 Minute Preview
CHEM1.PS3: : Energy
CHEM1.PS3.2: : Draw and interpret heating and cooling curves and phase diagrams. Analyze the energy changes involved in calorimetry by using the law of conservation of energy quantitatively (use of q = mc delta T) and qualitatively.

Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing. 5 Minute Preview

Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview

Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted. 5 Minute Preview

Reaction Energy
Exothermic chemical reactions release energy, while endothermic reactions absorb energy. But what causes some reactions to be exothermic, and others to be endothermic? In this simulation, compare the energy absorbed in breaking bonds to the energy released in forming bonds to determine if a reaction will be exothermic or endothermic. 5 Minute Preview
CHEM1.PS3.3: : Distinguish between endothermic and exothermic reactions by constructing potential energy diagrams and explain the differences between the two using chemical terms (e.g., activation energy). Recognize when energy is absorbed or given off depending on the bonds formed and bonds broken.

Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview

Feel the Heat
Have you ever used a glove warmer to keep your hands warm? How about an instant cold pack to treat an injury? In the Feel the Heat Gizmo, create your own hot and cold packs using various salts dissolved in water and different bag materials. Learn about exothermic and endothermic processes and how energy is absorbed or released when bonds are broken and new bonds form. 5 Minute Preview

Reaction Energy
Exothermic chemical reactions release energy, while endothermic reactions absorb energy. But what causes some reactions to be exothermic, and others to be endothermic? In this simulation, compare the energy absorbed in breaking bonds to the energy released in forming bonds to determine if a reaction will be exothermic or endothermic. 5 Minute Preview
CHEM1.PS3.4: : Analyze energy changes to explain and defend the law of conservation of energy.

Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter. 5 Minute Preview

Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another. 5 Minute Preview
CHEM1.PS4: : Waves and Their Applications in Technologies for Information Transfer
CHEM1.PS4.1: : Using a model, explain why elements emit and absorb characteristic frequencies of light and how this information is used.

Bohr Model of Hydrogen
Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted. 5 Minute Preview

Bohr Model: Introduction
Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once. 5 Minute Preview

Photoelectric Effect
Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and amount of light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies. 5 Minute Preview
Correlation last revised: 8/19/2021
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work

Start teaching with 20-40 Free Gizmos. See the full list.

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Free Gizmos change each semester. The new collection will be available Jul 01, 2023.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote