Skip to main content Skip to main navigation Skip to footer
Login
Student Login
Educator Login
Sign Up For Free
Gizmos home page Gizmos home page
Gizmos home page
  • Find Gizmos
    
                                                
    See Full Search Results
    • FREE Gizmos
    • NEW Releases
    • STEM Cases
    • Browse by Standard
    • Browse by Grade & Topic
    • Browse by Core Curriculum
  • About Gizmos
    • What's a Gizmo?
    • About STEM Cases
    • What are Gizmos Investigations?
    • Take a Tour
    • Supporting All Students
    • How to Get Gizmos
    • Testimonials
    • K-5 Science
  • Research
    • The Impact of Gizmos on Student Achievement
    • The Research Behind Gizmos
  • Support
    • Professional Development Overview
    • Meet the Team
    • Course Catalog
    • Help Center
    • Site Status
  • Resources
    • Popular Gizmos Collections
    • Educator Resource Hub
    • Success Stories
    • Insights
  • Get More Info
    • Sign Up for Free
    • Request Purchasing Info
    • Request a Demo
    • Request a Pilot
    • Contact Support
  • Login
    • Student Login
    • Educator Login
  • Sign Up For Free
  • Home
  • Find Gizmos
  • Browse by Standard (USA)
  • Mississippi Standards
  • Science: Biology

Mississippi - Science: Biology

College- and Career-Readiness Standards | Adopted: 2018

This correlation lists the recommended Gizmos for this state's curriculum standards. Click any Gizmo title below for more information.

DCI.BIO.1: : Cells as a System


(Framing Text): : Biologists have determined that organisms share unique characteristics that differentiate them from non-living things. Organisms range from very simple to extremely complex.

BIO.1A: : Students will demonstrate an understanding of the characteristics of life and biological organization.

BIO.1A.1: : Develop criteria to differentiate between living and non-living things.

Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : Organisms are composed of four primary macromolecules: carbohydrates, lipids, proteins, and nucleic acids. Metabolism is the sum of all chemical reactions between molecules within cells. Cells continuously utilize materials obtained from the environment and the breakdown of other macromolecules to synthesize their own large macromolecules for cellular structures and functions. These metabolic reactions require enzymes for catalysis.

BIO.1B: : Students will analyze the structure and function of the macromolecules that make up cells.

BIO.1B.1: : Develop and use models to compare and contrast the structure and function of carbohydrates, lipids, proteins, and nucleic acids (DNA and RNA) in organisms.

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.1B.2: : Design and conduct an experiment to determine how enzymes react given various environmental conditions (i.e., pH, temperature, and concentration). Analyze, interpret, graph, and present data to explain how those changing conditions affect the enzyme activity and the rate of the reactions that take place in biological organisms.

Screenshot of Collision Theory

Collision Theory

Observe a chemical reaction with and without a catalyst. Determine the effects of concentration, temperature, surface area, and catalysts on reaction rates. Reactant and product concentrations through time are recorded, and the speed of the simulation can be adjusted by the user. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : Cells are the basic units of all organisms, both prokaryotes and eukaryotes. Prokaryotic and eukaryotic cells differ in key structural features, but both can perform all functions necessary for life.

BIO.1C: : Students will relate the diversity of organelles to a variety of specialized cellular functions.

BIO.1C.3: : Contrast the structure of viruses with that of cells, and explain why viruses must use living cells to reproduce.

Screenshot of Virus Lytic Cycle

Virus Lytic Cycle

Release a lytic virus in a group of cells and observe how cells are infected over time and eventually destroyed. Data related to the number of healthy cells, infected cells, and viruses can be recorded over time to determine the time required for the virus to mature within a cell. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : The structure of the cell membrane allows it to be a selectively permeable barrier and maintain homeostasis. Substances that enter or exit the cell must do so via the cell membrane. This transport across the membrane may occur through a variety of mechanisms, including simple diffusion, facilitated diffusion, osmosis, and active transport.

BIO.1D: : Students will describe the structure of the cell membrane and analyze how the structure is related to its primary function of regulating transport in and out of cells to maintain homeostasis.

BIO.1D.1: : Plan and conduct investigations to prove that the cell membrane is a semi-permeable, allowing it to maintain homeostasis with its environment through active and passive transport processes.

Screenshot of Osmosis

Osmosis

Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.1D.2: : Develop and use models to explain how the cell deals with imbalances of solute concentration across the cell membrane (i.e., hypertonic, hypotonic, and isotonic conditions, sodium/potassium pump).

Screenshot of Osmosis

Osmosis

Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : Cells grow and reproduce through a regulated cell cycle. Within multicellular organisms, cells repeatedly divide for repair, replacement, and growth. Likewise, an embryo begins as a single cell that reproduces to form a complex, multicellular organism through the processes of cell division and differentiation.

BIO.1E: : Students will develop and use models to explain the role of the cell cycle during growth, development, and maintenance in multicellular organisms.

BIO.1E.3: : Relate the processes of cellular reproduction to asexual reproduction in simple organisms (i.e., budding, vegetative propagation, regeneration, binary fission). Explain why the DNA of the daughter cells is the same as the parent cell.

Screenshot of Cell Division

Cell Division

Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.BIO.2: : Energy Transfer


(Framing Text): : Organisms require energy to perform life functions. Cells are transformers of energy, continuously utilizing a complex sequence of reactions in which energy is transferred from one form to another, for example, from light energy to chemical energy to kinetic energy. Emphasis is on illustrating the inputs and outputs of matter and the transfer and transformation of energy in photosynthesis and cellular respiration. Assessment is limited to identification of the phases (i.e., glycolysis, citric acid cycle, and electron transport chain) in cellular respiration as well as light and light-independent reactions of photosynthesis and does not include specific biochemical reactions within the phases.

BIO.2: : Students will explain that cells transform energy through the processes of photosynthesis and cellular respiration to drive cellular functions.

BIO.2.2: : Develop models of the major reactants and products of photosynthesis to demonstrate the transformation of light energy into stored chemical energy in cells. Emphasize the chemical processes in which bonds are broken and energy is released, and new bonds are formed and energy is stored.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.2.3: : Develop models of the major reactants and products of cellular respiration (aerobic and anaerobic) to demonstrate the transformation of the chemical energy stored in food to the available energy of ATP. Emphasize the chemical processes in which bonds are broken and energy is released, and new bonds are formed and energy is stored.

Screenshot of Cell Energy Cycle

Cell Energy Cycle

Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.BIO.3: : Reproduction and Heredity


(Framing Text): : Offspring inherit DNA from their parents. The genes contained in the DNA (genotype) determine the traits expressed in the offspring’s phenotype. Alleles of a gene may demonstrate various patterns of inheritance. These patterns of inheritance may be followed through multiple generations within families.

BIO.3B: : Students will analyze and interpret data collected from probability calculations to explain the variation of expressed traits within a population.

BIO.3B.1: : Demonstrate Mendel’s law of dominance and segregation using mathematics to predict phenotypic and genotypic ratios by constructing Punnett squares with both homozygous and heterozygous allele pairs.

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.3B.2: : Illustrate Mendel’s law of independent assortment using Punnett squares and/or the product rule of probability to analyze monohybrid crosses.

Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Microevolution

Microevolution

Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.3B.3: : Investigate traits that follow non-Mendelian inheritance patterns (e.g., incomplete dominance, codominance, multiple alleles in human blood types, and sex-linkage).

Screenshot of Chicken Genetics

Chicken Genetics

Breed "pure" chickens with known genotypes that exhibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.3B.4: : Analyze and interpret data (e.g., pedigrees, family, and population studies) regarding Mendelian and complex genetic traits (e.g., sickle-cell anemia, cystic fibrosis, muscular dystrophy, color-blindness, and hemophilia) to determine patterns of inheritance and disease risk.

Screenshot of Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

(Framing Text): : Gene expression results in the production of proteins and thus determines the phenotypes of the organism. Changes in the DNA occur throughout an organism’s life. Mutations are a source of genetic variation that may have a positive, negative, or no effect on the organism.

BIO.3C: : Students will construct an explanation based on evidence to describe how the structure and nucleotide base sequence of DNA determines the structure of proteins or RNA that carry out essential functions of life.

BIO.3C.1: : Develop and use models to explain the relationship between DNA, genes, and chromosomes in coding the instructions for the traits transferred from parent to offspring.

Screenshot of Mouse Genetics (One Trait)

Mouse Genetics (One Trait)

Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Mouse Genetics (Two Traits)

Mouse Genetics (Two Traits)

Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.3C.2: : Evaluate the mechanisms of transcription and translation in protein synthesis.

Screenshot of RNA and Protein Synthesis

RNA and Protein Synthesis

Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.3C.3: : Use models to predict how various changes in the nucleotide sequence (e.g., point mutations, deletions, and additions) will affect the resulting protein product and the subsequent inherited trait.

Screenshot of Evolution: Natural and Artificial Selection

Evolution: Natural and Artificial Selection

Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.BIO.4: : Adaptations and Evolution


(Framing Text): : Evolution is a key unifying principle in biology. Differentiating between organic and chemical evolution and the analysis of the gradual changes in populations over time, helps students understand common features and differences between species and thus the relatedness between species. There are several factors that affect how natural selection acts on populations within their environments leading to speciation, extinction, and the current diversity of life on earth.

BIO.4: : Students will analyze and interpret evidence to explain the unity and diversity of life.

BIO.4.5: : Use Darwin's Theory to explain how genetic variation, competition, overproduction, and unequal reproductive success acts as driving forces of natural selection and evolution.

Screenshot of Rainfall and Bird Beaks - Metric

Rainfall and Bird Beaks - Metric

Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction. 5 Minute Preview


Lesson Info
Launch Gizmo

DCI.BIO.5: : Interdependence of Organisms and Their Environments


(Framing Text): : Complex interactions within an ecosystem affect the numbers and types of organisms that survive. Fluctuations in conditions can affect the ecosystem’s function, resources, and habitat availability. Ecosystems are subject to carrying capacities and can only support a limited number of organisms and populations. Factors that can affect the carrying capacities of populations are both biotic and abiotic.

BIO.5: : Students will Investigate and evaluate the interdependence of living organisms and their environment.

BIO.5.2: : Analyze models of the cycling of matter (e.g., carbon, nitrogen, phosphorus, and water) between abiotic and biotic factors in an ecosystem and evaluate the ability of these cycles to maintain the health and sustainability of the ecosystem.

Screenshot of Pond Ecosystem

Pond Ecosystem

Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.5.4: : Develop and use models to describe the flow of energy and amount of biomass through food chains, food webs, and food pyramids.

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Forest Ecosystem

Forest Ecosystem

Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time. 5 Minute Preview


Lesson Info
Launch Gizmo

BIO.5.6: : Analyze and interpret population data, both density-dependent and density-independent, to define limiting factors. Use graphical representations (growth curves) to illustrate the carrying capacity within ecosystems.

Screenshot of Food Chain

Food Chain

In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world. 5 Minute Preview


Lesson Info
Launch Gizmo
Screenshot of Rabbit Population by Season

Rabbit Population by Season

Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations. 5 Minute Preview


Lesson Info
Launch Gizmo

Correlation last revised: 5/19/2025

About STEM Cases

Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.

Realtime reporting icon

Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap

Time icon

STEM Cases take between 30-90 minutes for students to complete, depending on the case.

Save icon

Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.

Grades icon

Multiple grade-appropriate versions, or levels, exist for each STEM Case.

Handbook icon

Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.

STEM Case Help & Resources Sign Up for Free

How Free Gizmos Work

Gizmos icon

Start teaching with 20-40 Free Gizmos. See the full list.

Lesson materials list icon

Access lesson materials for Free Gizmos including teacher guides, lesson plans, and more.

Time icon

All other Gizmos are limited to a 5 Minute Preview and can only be used for 5 minutes a day.

Refresh icon

Free Gizmos change each semester. The new collection will be available January 1 and July 1.

Sign Up for Free

Want More?

Check out these quick links.

  • Sign up for a FREE Trial!
  • Take a Tour
  • Get Help

Find Your Solution

Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.

Sign Up For Free Get a Quote
Find Your Solution
Gizmos logo Brought to you by ExploreLearning

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

Other Products

Reflex icon Frax icon Science4Us icon
Find Gizmos
  • FREE Gizmos
  • NEW Releases
  • STEM Cases
  • Browse by Standard
  • Browse by Grade & Topic
  • Browse by Core Curriculum
About Gizmos
  • What's a Gizmo?
  • About STEM Cases
  • What are Gizmos Investigations?
  • Take a Tour
  • Supporting All Students
  • How to Get Gizmos
  • Testimonials
  • K-5 Science
Research
  • The Impact of Gizmos on Student Achievement
  • The Research Behind Gizmos
Support
  • Professional Development Overview
  • Meet the Team
  • Course Catalog
  • Help Center
  • Site Status
Resources
  • Popular Gizmos Collections
  • Educator Resource Hub
  • Success Stories
  • Insights
Get More Info
  • Sign Up for Free
  • Request Purchasing Info
  • Request a Demo
  • Request a Pilot
  • Contact Support

Get Connected

  • Support Form
  • Toll-Free 866-882-4141
  • Local +1-434-293-7043
  • Newsletter Sign-Up
  • Facebook
  • Twitter
  • YouTube
  • Instagram

Other Products

Reflex icon Frax icon Science4Us icon

© 2025 ExploreLearning. All rights reserved. Gizmo and Gizmos are registered trademarks of ExploreLearning. STEM Cases, Handbooks and the associated Realtime Reporting System are protected by US Patent No. 10,410,534

  • Terms and Conditions
  • Privacy Policy
  • Accessibility
  • System Requirements
  • Sitemap